日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

Adadelta原文解读

發(fā)布時(shí)間:2023/12/20 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Adadelta原文解读 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

Adadelta論文原文是:
《Adadelta:An adaptive learning rate method》

論文的重點(diǎn)是Section3,我們重點(diǎn)對(duì)Section3進(jìn)行解讀

section 3.Adadelta Method

  • the continual decay of learning rates throughout training, and 2) the need for a manually selected
    global learning rate.
    意思是Adadelta是為了:
    1.學(xué)習(xí)率衰退問(wèn)題,2.學(xué)習(xí)率自動(dòng)選擇的問(wèn)題
  • In the ADAGRAD method the denominator accumulates the squared gradients from each iteration starting at the beginning of training. Since each term is positive, this accumulated sum continues to grow throughout training, effectively shrinking the learning rate on each dimension. After many iterations, this learning rate will become infinitesimally small.
    這段話(huà)的意思是ADAGRAD會(huì)隨著訓(xùn)練的進(jìn)行,導(dǎo)致學(xué)習(xí)率逐漸變成0.

    3.1.Idea1:Accumulate Over Window
    Instead of accumulating the sum of squared gradients over all time, we restricted the window of past gradients that are accumulated to be some fixed size www (instead of size ttt where ttt is the current iteration as in ADAGRAD). With this windowed accumulation the denominator of ADAGRAD cannot accumulate to infinity and instead becomes a local estimate using recent gradients. This ensures that learning continues to make progress even after many iterations of updates have been done.
    意思是用一個(gè)窗口w,而不是像adagrad那樣累積之前t輪所有的權(quán)重.
    E[g2]t=ρE[g2]t?1+(1?ρ)gt2(8)E[g^2]_t=\rho E[g^2]_{t-1}+(1-\rho)g_t^2(8)E[g2]t?=ρE[g2]t?1?+(1?ρ)gt2?(8)
    RMS[g]t=E[g2]t+?(9)RMS[g]_t=\sqrt{E[g^2]_t+\epsilon} (9)RMS[g]t?=E[g2]t?+??(9)
    △xt=?ηRMS[g]tgt(10)△x_t=-\frac{\eta}{RMS[g]_t}g_t (10)xt?=?RMS[g]t?η?gt?(10)

    上面的式子中,(8)代入(9),(9)代入(10),即為最終偽代碼的一部分
    然后,因?yàn)槭阶又?span id="ozvdkddzhkzd" class="katex--inline">η\etaη是需要手工設(shè)定的,所以下面有了3.2

    3.2.Idea2:Correct Units with Hessian Approximation
    二階牛頓法可以寫(xiě)成:
    xt+1=xt?f′(x)f′′(x)x_{t+1}=x_t-\frac{f'(x)}{f''(x)}xt+1?=xt??f(x)f(x)?
    所以二階牛頓法中,我們可以把1f′′(x)\frac{1}{f''(x)}f(x)1?視為學(xué)習(xí)率。

    在二階牛頓法中,有:
    △x=?f?x?2f?x2△x=\frac{\frac{\partial f}{\partial x}}{\frac{\partial ^2f}{\partial x^2}}x=?x2?2f??x?f??
    可以推導(dǎo)出:
    1?2f?x2=△x?f?x\frac{1}{\frac{\partial ^2 f}{\partial x^2}}=\frac{△x}{\frac{\partial f}{\partial x}}?x2?2f?1?=?x?f?x?(這個(gè)步驟我認(rèn)為沒(méi)啥用,就是在論文里面湊字?jǐn)?shù)逼叨幾句)

    Since the RMS of the previous gradients is already represented in the denominator in Eqn. 10 we considered a measure of the △x\triangle xx quantity in the numerator.
    這里的意思是已經(jīng)把式子(10)的分母處理完了(這是廢話(huà),這里是為了增加字?jǐn)?shù))

    △xt\triangle x_txt? for the current time step is not known, so we assume the curvature is locally smooth and approximate △xt\triangle x_txt? by compute the exponentially decaying RMS over a window of size w of previous △x\triangle xx to give the ADADELTA method.
    這段話(huà)什么意思呢?
    意思是說(shuō):
    我們同樣對(duì)△x\triangle xx使用一個(gè)窗口來(lái)計(jì)算合理的值,講人話(huà)就是:我們腦袋一拍,覺(jué)得這里就用均方根吧。
    然后就有了分子中中的RMS[△x]t?1RMS[\triangle x]_{t-1}RMS[x]t?1?

    最終算法如下:

    Note:
    算法中的第4步和第6步代入第5步,然后第5步代入第7步,這樣就算完成了一次更新迭代

    總結(jié)

    以上是生活随笔為你收集整理的Adadelta原文解读的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

    如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。