日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

深度学习(二十一)——SRCNN, DRCN, VDSR

發(fā)布時間:2023/12/20 pytorch 58 豆豆
生活随笔 收集整理的這篇文章主要介紹了 深度学习(二十一)——SRCNN, DRCN, VDSR 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

https://antkillerfarm.github.io/

圖像超分辨率算法(續(xù))

前DL時代的SR

從信號處理的角度來說,LR之所以無法恢復(fù)成HR,主要在于丟失了圖像的高頻信息。(Nyquist采樣定理)

Harry Nyquist,1889~1976,University of North Dakota本碩(1914,1915)+耶魯博士(1917)。AT&T貝爾實驗室電子工程師。IEEE Medal of Honor獲得者(1960)。

IEEE Medal of Honor是IEEE的最高獎,除了1963年之外,每年只有1人得獎,個別年份甚至?xí)喛铡?/p>

最簡單的當(dāng)然是《圖像處理理論(二)》中提到的梯度銳化和拉普拉斯銳化,這種簡單算法當(dāng)然不要指望有什么好效果,聊勝于無而已。這是1995年以前的主流做法。

稍微復(fù)雜的方法,如同CV的其它領(lǐng)域經(jīng)歷了“信號處理->ML->DL”的變遷一樣,SR也進入了ML階段。

上圖是兩種典型的SR算法。

左圖算法的中心思想是從圖片中找出相似的大尺度區(qū)域,然后利用這個大區(qū)域的邊緣信息進行SR。但這個方法對于那些只出現(xiàn)一次的邊緣信息是沒什么用的。

于是就有了右圖的算法。對各種邊緣信息建立一個數(shù)據(jù)庫,使用時從數(shù)據(jù)庫中挑一個最類似的邊緣信息進行SR。這個方法比上一個方法好一些,但不夠魯棒,圖片稍作改動,就有可能無法檢索到匹配的邊緣信息了。

ML時代的代表算法還有:

《Image Super-Resolution via Sparse Representation》

這篇論文是黃煦濤和馬毅小組的Jianchao Yang的作品。

黃煦濤(Thomas Huang),1936年生。生于上海,國立臺灣大學(xué)本科(1956)+MIT碩博(1960,1963)。UIUC教授。美國工程院院士,中國科學(xué)院+中國工程院外籍院士。

馬毅,清華本科(1995)+UCB碩博(1997,2000)。UCB教授。IEEE fellow。
個人主頁:
http://yima.csl.illinois.edu/

這篇論文提出的算法,在形式上和后文這些DL算法已經(jīng)非常類似了,也是基于HR和LR配對的有監(jiān)督訓(xùn)練。區(qū)別只在于這篇論文使用矩陣的稀疏表示來擬合SR函數(shù),而DL算法使用神經(jīng)網(wǎng)絡(luò)擬合SR函數(shù)。前者是線性變換,而后者是非線性變換。

參考

https://zhuanlan.zhihu.com/p/25532538

深度學(xué)習(xí)在圖像超分辨率重建中的應(yīng)用

https://zhuanlan.zhihu.com/p/25201511

深度對抗學(xué)習(xí)在圖像分割和超分辨率中的應(yīng)用

https://mp.weixin.qq.com/s/uK0L5RV0bB2Jnr5WCZasfw

深度學(xué)習(xí)在單圖像超分辨率上的應(yīng)用:SRCNN、Perceptual loss、SRResNet

https://mp.weixin.qq.com/s/xpvGz1HVo9eLNDMv9v7vqg

NTIRE2017奪冠論文:用于單一圖像超分辨率的增強型深度殘差網(wǎng)絡(luò)

https://www.zhihu.com/question/25401250

如何通過多幀影像進行超分辨率重構(gòu)?

https://www.zhihu.com/question/38637977

超分辨率重建還有什么可以研究的嗎?

https://zhuanlan.zhihu.com/p/25912465

胎兒MRI高分辨率重建技術(shù):現(xiàn)狀與趨勢

https://mp.weixin.qq.com/s/i-im1sy6MNWP1Fmi5oWMZg

華為推出新型HiSR:移動端的超分辨率算法

SRCNN

SRCNN(Super-Resolution CNN)是湯曉鷗小組的Chao Dong的作品。

湯曉鷗,中國科學(xué)技術(shù)大學(xué)本科(1990)+羅切斯特大學(xué)碩士(1991)+麻省理工學(xué)院博士(1996)。香港中文大學(xué)教授,商湯科技聯(lián)合創(chuàng)始人。

論文:

《Learning a Deep Convolutional Network for Image Super-Resolution》

該方法對于一個低分辨率圖像,先使用雙三次(bicubic)插值將其放大到目標(biāo)大小,再通過三層卷積網(wǎng)絡(luò)做非線性映射,得到的結(jié)果作為高分辨率圖像輸出。作者將三層卷積的結(jié)構(gòu)解釋成與傳統(tǒng)SR方法對應(yīng)的三個步驟:圖像塊的提取和特征表示,特征非線性映射和最終的重建。

三個卷積層使用的卷積核的大小分為為9x9, 1x1和5x5,前兩個的輸出特征個數(shù)分別為64和32。

以下是論文的效果表格:

吐槽一下,這種表格屬于論文必須有,但是卻沒什么營養(yǎng)的部分,且不乏造假的例子。原因很簡單,一個idea,如果沒有好效果,paper連發(fā)都發(fā)不了。但是,沒有好效果的idea,未必沒有價值,不說是否能啟發(fā)人們的思維,至少能讓后來者,不用再掉到同一個坑里。
比如化學(xué)領(lǐng)域,失敗的實驗遠遠多于成功的實驗。在計算能力不發(fā)達的時代,人們主要關(guān)注成功的案例,但現(xiàn)在大家逐漸意識到:失敗的案例才是更大的財富。

這里對其中的指標(biāo)做一個簡介。

PSNR(Peak Signal to Noise Ratio,峰值信噪比)

MSE=1H×Wi=1Hj=1W(X(i,j)?Y(i,j))2MSE=1H×W∑i=1H∑j=1W(X(i,j)?Y(i,j))2

PSNR=10log10((2n?1)2MSE)PSNR=10log10?((2n?1)2MSE)

其中,MSE表示當(dāng)前圖像X和參考圖像Y的均方誤差(Mean Square Error),H、W分別為圖像的高度和寬度;n為每像素的比特數(shù),一般取8,即像素灰階數(shù)為256. PSNR的單位是dB,數(shù)值越大表示失真越小。

雖然PSNR和人眼的視覺特性并不完全一致,但是一般認為PSNR在38以上的時候,人眼就無法區(qū)分兩幅圖片了。

SSIM(structural similarity, 結(jié)構(gòu)相似性),也是一種全參考的圖像質(zhì)量評價指標(biāo),它分別從亮度、對比度、結(jié)構(gòu)三方面度量圖像相似性。

μX=1H×Wi=1Hj=1WX(i,j),σ2X=1H×Wi=1Hj=1W(X(i,j)?μX)2μX=1H×W∑i=1H∑j=1WX(i,j),σX2=1H×W∑i=1H∑j=1W(X(i,j)?μX)2

σXY=1H×Wi=1Hj=1W((X(i,j)?μX)(Y(i,j)?μY))σXY=1H×W∑i=1H∑j=1W((X(i,j)?μX)(Y(i,j)?μY))

l(X,Y)=2μXμY+C1μ2X+μ2Y+C1,c(X,Y)=2σXσY+C2σ2X+σ2Y+C2,s(X,Y)=σXY+C3σXσY+C3l(X,Y)=2μXμY+C1μX2+μY2+C1,c(X,Y)=2σXσY+C2σX2+σY2+C2,s(X,Y)=σXY+C3σXσY+C3

SSIM(X,Y)=l(X,Y)?c(X,Y)?s(X,Y)SSIM(X,Y)=l(X,Y)?c(X,Y)?s(X,Y)

C1,C2,C3C1,C2,C3為常數(shù),為了避免分母為0的情況,通常取C1=(K1?L)2,C2=(K2?L)2,C3=C2/2C1=(K1?L)2,C2=(K2?L)2,C3=C2/2,一般地K1=0.01,K2=0.03,L=255K1=0.01,K2=0.03,L=255

SSIM取值范圍[0,1],值越大,表示圖像失真越小。

在實際應(yīng)用中,可以利用滑動窗將圖像分塊,令分塊總數(shù)為N,考慮到窗口形狀對分塊的影響,采用高斯加權(quán)計算每一窗口的均值、方差以及協(xié)方差,然后計算對應(yīng)塊的結(jié)構(gòu)相似度SSIM,最后將平均值作為兩圖像的結(jié)構(gòu)相似性度量,即平均結(jié)構(gòu)相似性MSSIM:

MSSIM(X,Y)=1Nk=1NSSIM(xk,yk)MSSIM(X,Y)=1N∑k=1NSSIM(xk,yk)

需要指出的是,PSNR和SSIM都是一些物理指標(biāo),它和人眼的視覺感受有一定的差異,不見得指標(biāo)差的圖就一定不如指標(biāo)好的圖(比如SRGAN)。

主觀得分一般采用MOS(mean opinion score)作為評價指標(biāo)。

參考:

http://blog.csdn.net/u011692048/article/details/77496861

超分辨率重建之SRCNN

http://www.cnblogs.com/vincent2012/archive/2012/10/13/2723152.html

PSNR和SSIM

DRCN

DRCN(deeply-recursive convolutional network)是韓國首爾國立大學(xué)的作品。

論文:

《Deeply-Recursive Convolutional Network for Image Super-Resolution》

SRCNN的層數(shù)較少,同時感受野也較小(13x13)。DRCN提出使用更多的卷積層增加網(wǎng)絡(luò)感受野(41x41),同時為了避免過多網(wǎng)絡(luò)參數(shù),該文章提出使用遞歸神經(jīng)網(wǎng)絡(luò)(RNN)。網(wǎng)絡(luò)的基本結(jié)構(gòu)如下:

與SRCNN類似,該網(wǎng)絡(luò)分為三個模塊,第一個是Embedding network,相當(dāng)于特征提取,第二個是Inference network, 相當(dāng)于特征的非線性變換,第三個是Reconstruction network,即從特征圖像得到最后的重建結(jié)果。其中的Inference network是一個遞歸網(wǎng)絡(luò),即數(shù)據(jù)循環(huán)地通過該層多次。將這個循環(huán)進行展開,就等效于使用同一組參數(shù)的多個串聯(lián)的卷積層,如下圖所示:

其中的H1H1HDHD是D個共享參數(shù)的卷積層。DRCN將每一層的卷積結(jié)果都通過同一個Reconstruction Net得到一個重建結(jié)果,從而共得到D個重建結(jié)果,再把它們加權(quán)平均得到最終的輸出。另外,受到ResNet的啟發(fā),DRCN通過skip connection將輸入圖像與H_d的輸出相加后再作為Reconstruction Net的輸入,相當(dāng)于使Inference Net去學(xué)習(xí)高分辨率圖像與低分辨率圖像的差,即恢復(fù)圖像的高頻部分。

參考:

http://blog.csdn.net/u011692048/article/details/77500764

超分辨率重建之DRCN

VDSR

VDSR是DRCN的原班人馬的新作。

論文:

《Accurate Image Super-Resolution Using Very Deep Convolutional Networks》

代碼:

code:https://github.com/huangzehao/caffe-vdsr

SRCNN存在三個問題需要進行改進:

1、依賴于小圖像區(qū)域的內(nèi)容;

2、訓(xùn)練收斂太慢;

3、網(wǎng)絡(luò)只對于某一個比例有效。

VDSR模型主要有以下幾點貢獻:

1、增加了感受野,在處理大圖像上有優(yōu)勢,由SRCNN的13x13變?yōu)?1x41。(20層的3x3卷積)

2、采用殘差圖像進行訓(xùn)練,收斂速度變快,因為殘差圖像更加稀疏,更加容易收斂(換種理解就是LR攜帶者低頻信息,這些信息依然被訓(xùn)練到HR圖像,然而HR圖像和LR圖像的低頻信息相近,這部分花費了大量時間進行訓(xùn)練)。

3、考慮多個尺度,一個卷積網(wǎng)絡(luò)可以處理多尺度問題。

訓(xùn)練的策略:

1、采用殘差的方式進行訓(xùn)練,避免訓(xùn)練過長的時間。

2、使用大的學(xué)習(xí)進行訓(xùn)練。

3、自適應(yīng)梯度裁剪,將梯度限制在某一個范圍。

4、多尺度,多種尺度樣本一起訓(xùn)練可以提高大尺度的準(zhǔn)確率。

對于邊界問題,由于卷積的操作導(dǎo)致圖像變小的問題,本文作者提出一個新的策略,就是每次卷積后,圖像的size變小,但是,在下一次卷積前,對圖像進行補0操作,恢復(fù)到原來大小,這樣不僅解決了網(wǎng)絡(luò)深度的問題,同時,實驗證明對邊界像素的預(yù)測結(jié)果也得到了提升。

參考:

http://blog.csdn.net/u011692048/article/details/77512310

超分辨率重建之VDSR

總結(jié)

以上是生活随笔為你收集整理的深度学习(二十一)——SRCNN, DRCN, VDSR的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。