日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【计算神经科学冒险者们】2.3 神经编码:特征选择(Neural Encoding:Feature Selection)...

發布時間:2023/12/20 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【计算神经科学冒险者们】2.3 神经编码:特征选择(Neural Encoding:Feature Selection)... 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Today's Task:How to find the components of this model

1 選取特征Feature

1.1 How to proceed?

Our problem is one of dimensionality!

For instance, in the case of the movie we showed the retina, we can define a movie in terms of the intensity of three colors in every pixel in one megapixel image.

1.2 Dimensionality reduction

Start with a very high dimensional description(e.g. an image or a time-varying waveform) and pick out a small set of relevant dimensions.

s(t)----dicretize------>s(k)

?

采樣系統對于不同的刺激的響應,我們可以識別是什么輸入觸發響應。

1.3 What is the right stimulus to use?

?We want to sample the responses of the system to a variety of stimuli so we can characterize what it is about the input that triggers responses.

One common and useful method is to use Gaussian?white noise.

1.4 Determining multiple features from white noise

這里只要了解spike-trigger 平均值這個概念,就是把數據整合起來,得到一條類似于高斯函數的曲線,峰值對應的橫坐標表示的值。

1.5 Reverse correlation: the spike-triggered average 反相關系數:尖峰平均值

橫坐標上表示的是一個響應spike,我們提取從開始刺激到產生響應的時間,取它們的平均值,得到一條噪聲較少的曲線。

?

?

?每列值都是一個圖像,這里包括時間維度和空間維度。

1.6 Linear filtering

Stimulus feature f is a vector in a high-dimensional stimulus space

?線性過濾器,相當于卷積,也相當于投影。我們有一個刺激s(方向與t3相同),投影到f上s·f(???)

2 Determining the nonlinear input/output function

The input/output function is:

This can be found from data using Bayes' rule:

?

?

?P(s1)是一個高斯曲線

Nonlinear input/output function

?

?

2.1 Linear/nonlinear models

?

3 High-dimensional feature selection

?Less basc coding models

有多個過濾,選擇多個特征。core detector neuron 每個對不同的頻率的過濾。

Determining multiple feature from white noise

How could we find features?

3.1 Principal component analysis

PCA's job is to find low dimengtional structure of a cloud of points.

compression.

PCA: eigenfaces

common stracture, may be restructive by little number of photos

PCA: spike sorting

PCA gives us a method to:

1. Find a representation of our data which has lower dimensionality, giving us a computationallyeasier problem to work with.

2. Find the vectors along which the variation of our data is maximal in our feature space.

4 Finding interesting features in the retina

right group——on

left group——off

?

?這節聽得很蒙蔽啊,還是找本教科書看看吧

轉載于:https://www.cnblogs.com/uniKino/p/10165705.html

總結

以上是生活随笔為你收集整理的【计算神经科学冒险者们】2.3 神经编码:特征选择(Neural Encoding:Feature Selection)...的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。