日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

使用 GPT-3 模型,研究人员研发出能听懂英语指令并执行家务的机器人

發(fā)布時間:2023/12/19 综合教程 36 生活家
生活随笔 收集整理的這篇文章主要介紹了 使用 GPT-3 模型,研究人员研发出能听懂英语指令并执行家务的机器人 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

5 月 14 日消息,普林斯頓大學、斯坦福大學和谷歌的一組研究人員,利用 OpenAI 的 GPT-3 Davinci 模型,研發(fā)出了一款能聽懂英語指令并執(zhí)行家務的機器人,名為 TidyBot。這款機器人可以根據(jù)用戶的喜好,自動完成如分類洗衣服、撿起地上的垃圾、收拾玩具等任務。

GPT-3 Davinci 模型是一種深度學習模型,屬于 GPT 模型系列的一部分,可以理解和生成自然語言。該模型具有強大的總結能力,可以從大量的文本數(shù)據(jù)中學習復雜的對象屬性和關系。研究人員利用這種能力,讓機器人根據(jù)用戶提供的幾個示例對象放置位置,如“黃色襯衫放在抽屜里,深紫色襯衫放在衣柜里,白色襪子放在抽屜里”,然后讓模型總結出用戶的一般偏好規(guī)則,并應用到未來的交互中。

研究人員在論文中寫道:“我們的基本見解是,LLM(大型語言模型)的總結能力與個性化機器人的泛化需求非常匹配。LLM 展示了通過總結實現(xiàn)泛化的驚人能力,利用從海量文本數(shù)據(jù)集中學習到的復雜對象屬性和關系。”

他們還寫道:“與需要昂貴的數(shù)據(jù)收集和模型訓練的傳統(tǒng)方法不同,我們展示了 LLM 可以直接開箱即用地實現(xiàn)機器人領域的泛化,利用它們從海量文本數(shù)據(jù)中學習到的強大的總結能力。”

研究人員在論文網(wǎng)站上展示了一個機器人,它能夠將洗衣服分為淺色和深色,回收飲料罐,扔掉垃圾,收拾包和餐具,將散落的物品放回原處,并將玩具放入抽屜。

研究人員首先測試了一個基于文本的基準數(shù)據(jù)集,其中輸入了用戶偏好,并要求模型創(chuàng)建個性化規(guī)則來確定物品歸屬。模型將示例總結為一般規(guī)則,并使用總結來確定新物品的放置位置。基準場景定義在四個房間中,每個房間有 24 個場景。每個場景包含兩到五個放置物品的地方,并且有相同數(shù)量的已見和未見物品供模型分類。他們寫道,這個測試在未見物品上達到了 91.2% 的準確率。

當他們將這種方法應用到真實世界的機器人 TidyBot 時,他們發(fā)現(xiàn)它能夠成功地收拾 85% 的物體。TidyBot 在八個真實場景中進行了測試,每個場景有一組十個物品,并在每個場景中運行機器人 3 次。據(jù)了解,除了 LLM,TidyBot 還使用了一個叫做 CLIP 的圖像分類器和一個叫做 OWL-ViT 的物體檢測器。

佐治亞理工學院交互計算學院的助理教授徐丹飛(Danfei Xu)在談到谷歌的 PaLM-E 模型時表示,LLM 使機器人具有更多的問題解決能力。“以前的任務規(guī)劃系統(tǒng)大多依賴于一些形式的搜索或優(yōu)化算法,這些算法不太靈活,也很難構建。LLM 和多模態(tài) LLM 使這些系統(tǒng)能夠從互聯(lián)網(wǎng)規(guī)模的數(shù)據(jù)中受益,并輕松地用于解決新問題。”他說。

總結

以上是生活随笔為你收集整理的使用 GPT-3 模型,研究人员研发出能听懂英语指令并执行家务的机器人的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內容還不錯,歡迎將生活随笔推薦給好友。