日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > pytorch >内容正文

pytorch

batchnorm pytorch_GitHub趋势榜第一:TensorFlow+PyTorch深度学习资源大汇总

發布時間:2023/12/19 pytorch 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 batchnorm pytorch_GitHub趋势榜第一:TensorFlow+PyTorch深度学习资源大汇总 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

【新智元導讀】該項目是Jupyter Notebook中TensorFlow和PyTorch的各種深度學習架構,模型和技巧的集合。內容非常豐富,適用于Python 3.7,適合當做工具書。

本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各種深度學習架構,模型和技巧,內容非常豐富,適用于Python 3.7,適合當做工具書。

大家可以將內容按照需要進行分割,打印出來,或者做成電子書等,隨時查閱。

傳統機器學習

感知器

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

邏輯回歸

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

Softmax Regression (Multinomial Logistic Regression)

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

多層感知器

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

具有Dropout多層感知器

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

具有批量歸一化的多層感知器

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

具有反向傳播的多層感知器

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb

CNN

基礎

CNN

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/convnet.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

具有He初始化的CNN

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

概念

用等效卷積層代替完全連接

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

全卷積

全卷積神經網絡

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

AlexNet

AlexNet on CIFAR-10

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

VGG

CNN VGG-16

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

VGG-16 Gender Classifier Trained on CelebA

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

CNN VGG-19

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

ResNet

ResNet and Residual Blocks

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

ResNet-18 Digit Classifier Trained on MNIST

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

ResNet-18 Gender Classifier Trained on CelebA

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

ResNet-34 Digit Classifier Trained on MNIST

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

ResNet-34 Gender Classifier Trained on CelebA

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

ResNet-50 Digit Classifier Trained on MNIST

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

ResNet-50 Gender Classifier Trained on CelebA

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

ResNet-101 Gender Classifier Trained on CelebA

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

ResNet-152 Gender Classifier Trained on CelebA

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

Network in Network

Network in Network CIFAR-10 Classifier

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

度量學習

具有多層感知器的孿生網絡

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb

自動編碼機

全連接自動編碼機

自動編碼機

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

具有解卷積/轉置卷積的卷積自動編碼機

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

具有解卷積的卷積自動編碼機(無池化操作)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/aer-deconv-nopool.ipynb

具有最近鄰插值的卷積自動編碼機

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder-conv-nneighbor.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

具有最近鄰插值的卷積自動編碼機 - 在CelebA上進行訓練

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

具有最近鄰插值的卷積自動編碼機 - 在Quickdraw上訓練

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

變分自動編碼機

變分自動編碼機

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

卷積變分自動編碼機

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

條件變分自動編碼機

條件變分自動編碼機(重建丟失中帶標簽)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

條件變分自動編碼機(重建損失中沒有標簽)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

卷積條件變分自動編碼機(重建丟失中帶標簽)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

卷積條件變分自動編碼機(重建損失中沒有標簽)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

GAN

MNIST上完全連接的GAN

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

MNIST上的卷積GAN

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

具有標簽平滑的MNIST上的卷積GAN

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

RNN

Many-to-one: Sentiment Analysis / Classification

A simple single-layer RNN (IMDB)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

RNN with LSTM cells (IMDB)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

RNN with LSTM cells and Own Dataset in CSV Format (IMDB)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

RNN with GRU cells (IMDB)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

Multilayer bi-directional RNN (IMDB)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

Many-to-Many / Sequence-to-Sequence

A simple character RNN to generate new text (Charles Dickens)

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

序數回歸

Ordinal Regression CNN -CORAL w. ResNet34 on AFAD-Lite

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

Ordinal Regression CNN -Niu et al. 2016 w. ResNet34 on AFAD-Lite

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

Ordinal Regression CNN -Beckham and Pal 2016 w. ResNet34 on AFAD-Lite

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

技巧和竅門

Cyclical Learning Rate

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

PyTorch工作流程和機制

自定義數據集

使用PyTorch數據集加載實用程序用于自定義數據集-CSV文件轉換為HDF5

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb

使用PyTorch數據集加載自定義數據集的實用程序 - 來自CelebA的圖像

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

使用PyTorch數據集加載自定義數據集的實用程序 - 從Quickdraw中提取

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

使用PyTorch數據集加載實用程序用于自定義數據集 - 從街景房號(SVHN)數據集中繪制

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/custom-data-loader-svhn.ipynb

訓練和預處理

帶固定內存的數據加載

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb

標準化圖像

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

圖像轉換示例

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

Char-RNN with Own Text File

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

Sentiment Classification RNN with Own CSV File

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

并行計算

在CelebA上使用具有DataParallel -VGG-16性別分類器的多個GPU

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

其它

Sequential API and hooks

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-sequential.ipynb

圖層內的權重共享

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb

僅使用Matplotlib在Jupyter Notebook中繪制實時訓練性能

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/plot-jupyter-matplotlib.ipynb

Autograd

在PyTorch中獲取中間變量的漸變

PyTorch:

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb

TensorFlow工作流及機制

自定義數據集

使用NumPy NPZ Archives為Minibatch訓練添加圖像數據集

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

使用HDF5存儲用于Minibatch培訓的圖像數據集

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

使用輸入Pipeline從TFRecords文件中讀取數據

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

使用隊列運行器直接從磁盤提供圖像

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb

使用TensorFlow的Dataset API

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb

訓練和預處理

保存和加載訓練模型 - 來自TensorFlow Checkpoint文件和NumPy NPZ Archives

TensorFlow 1:

https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

參考鏈接:

https://github.com/rasbt/deeplearning-models

總結

以上是生活随笔為你收集整理的batchnorm pytorch_GitHub趋势榜第一:TensorFlow+PyTorch深度学习资源大汇总的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。