日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程语言 > python >内容正文

python

code blocks代码性能分析_记一次Python Web接口优化,性能提升25倍!

發(fā)布時間:2023/12/18 python 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 code blocks代码性能分析_记一次Python Web接口优化,性能提升25倍! 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

背景

我們負(fù)責(zé)的一個業(yè)務(wù)平臺,有次在發(fā)現(xiàn)設(shè)置頁面的加載特別特別地慢,簡直就是令人發(fā)指

讓用戶等待 36s 肯定是不可能的,于是我們就要開啟優(yōu)化之旅了。

投石問路

既然是網(wǎng)站的響應(yīng)問題,可以通過 Chrome 這個強大的工具幫助我們快速找到優(yōu)化方向。

通過 Chrome 的 Network 除了可以看到接口請求耗時之外,還能看到一個時間的分配情況,選擇一個配置沒有那么多的項目,簡單請求看看:

雖然只是一個只有三條記錄的項目,加載項目設(shè)置都需要 17s,通過 Timing, 可以看到總的請求共耗時 17.67s ,但有 17.57s 是在 Waiting(TTFB) 狀態(tài)。

TTFB 是 Time to First Byte 的縮寫,指的是瀏覽器開始收到服務(wù)器響應(yīng)數(shù)據(jù)的時間(后臺處理時間+重定向時間),是反映服務(wù)端響應(yīng)速度的重要指標(biāo)。

Profile 火焰圖 + 代碼調(diào)優(yōu)

那么大概可以知道優(yōu)化的大方向是在后端接口處理上面,后端代碼是 Python + Flask 實現(xiàn)的,先不盲猜,直接上 Profile:

第一波優(yōu)化:功能交互重新設(shè)計

說實話看到這段代碼是絕望的:完全看不出什么?只是看到很多 gevent 和 Threading,因為太多協(xié)程或者線程?

這時候一定要結(jié)合代碼來分析(為了簡短篇幅,參數(shù)部分用 “...” 代替):

def get_max_cpus(project_code, gids): """ """ ... # 再定義一個獲取 cpu 的函數(shù) def get_max_cpu(project_setting, gid, token, headers): group_with_machines = utils.get_groups(...) hostnames = get_info_from_machines_info(...) res = fetchers.MonitorAPIFetcher.get(...) vals = [ round(100 - val, 4) for ts, val in res['series'][0]['data'] if not utils.is_nan(val) ] maxmax_val = max(vals) if vals else float('nan') max_cpus[gid] = max_val # 啟動線程批量請求 for gid in gids: t = Thread(target=get_max_cpu, args=(...)) threads.append(t) t.start() # 回收線程 for t in threads: t.join() return max_cpus

通過代碼可以看到,為了更加快速獲取 gids 所有的 cpu_max 數(shù)據(jù),為每個 gid 分配一個線程去請求,最終再返回最大值。

這里會出現(xiàn)兩個問題:

  • 在一個 web api 做線程的 創(chuàng)建 和 銷毀 是有很大成本的,因為接口會頻繁被觸發(fā),線程的操作也會頻繁發(fā)生,應(yīng)該盡可能使用線程池之類的,降低系統(tǒng)花銷;
  • 該請求是加載某個 gid (群組) 下面的機器過去 7 天的 CPU 最大值,可以簡單拍腦袋想下,這個值不是實時值也不是一個均值,而是一個最大值,很多時候可能并沒有想象中那么大價值;
  • 既然知道問題,那就有針對性的方案:

  • 調(diào)整功能設(shè)計,不再默認(rèn)加載 CPU 最大值,換成用戶點擊加載(一來降低并發(fā)的可能,二來不會影響整體);
  • 因為 1 的調(diào)整,去掉多線程實現(xiàn);
  • 再看第一波優(yōu)化后的火焰圖:

    這次看的火焰圖雖然還有很大的優(yōu)化空間,但起碼看起來有點正常的樣子了。

    第二波優(yōu)化:Mysql 操作優(yōu)化處理

    我們再從頁面標(biāo)記處(接口邏輯處)放大火焰圖觀察:

    看到好大一片操作都是由 utils.py:get_group_profile_settings 這個函數(shù)引起的數(shù)據(jù)庫操作熱點。

    同理,也是需要通過代碼分析:

    def get_group_profile_settings(project_code, gids): # 獲取 Mysql ORM 操作對象 ProfileSetting = unpurview(sandman.endpoint_class('profile_settings')) session = get_postman_session() profile_settings = {} for gid in gids: compound_name = project_code + ':' + gid result = session.query(ProfileSetting).filter( ProfileSetting.name == compound_name ).first() if result: resultresult = result.as_dict() tag_indexes = result.get('tag_indexes') profile_settings[gid] = { 'tag_indexes': tag_indexes, 'interval': result['interval'], 'status': result['status'], 'profile_machines': result['profile_machines'], 'thread_settings': result['thread_settings'] } ...(省略) return profile_settings

    看到 Mysql ,第一個反應(yīng)就是 索引問題,所以優(yōu)先去看看數(shù)據(jù)庫的索引情況,如果有索引的話應(yīng)該不會是瓶頸:

    很奇怪這里明明已經(jīng)有了索引了,為什么速度還是這個鬼樣子呢!

    正當(dāng)毫無頭緒的時候,突然想起在 第一波優(yōu)化 的時候, 發(fā)現(xiàn) gid(群組)越多的影響越明顯,然后看回上面的代碼,看到那句:

    for gid in gids: ...

    我仿佛明白了什么。

    這里是每個 gid 都去查詢一次數(shù)據(jù)庫,而項目經(jīng)常有 20 ~ 50+ 個群組,那肯定直接爆炸了。

    其實 Mysql 是支持單字段多值的查詢,而且每條記錄并沒有太多的數(shù)據(jù),我可以嘗試下用 Mysql 的 OR 語法,除了避免多次網(wǎng)絡(luò)請求,還能避開那該死的 for

    正當(dāng)我想事不宜遲直接搞起的時候,余光瞥見在剛才的代碼還有一個地方可以優(yōu)化,那就是:

    看到這里,熟悉的朋友大概會明白是怎么回事。

    GetAttr 這個方法是Python 獲取對象的 方法/屬性 時候會用到,雖然不可不用,但是如果在使用太過頻繁也會有一定的性能損耗。

    結(jié)合代碼一起來看:

    def get_group_profile_settings(project_code, gids): # 獲取 Mysql ORM 操作對象 ProfileSetting = unpurview(sandman.endpoint_class('profile_settings')) session = get_postman_session() profile_settings = {} for gid in gids: compound_name = project_code + ':' + gid result = session.query(ProfileSetting).filter( ProfileSetting.name == compound_name ).first() ...

    在這個遍歷很多次的 for 里面,session.query(ProfileSetting) 被反復(fù)無效執(zhí)行了,然后 filter 這個屬性方法也被頻繁讀取和執(zhí)行,所以這里也可以被優(yōu)化。

    總結(jié)下的問題就是:

  • 數(shù)據(jù)庫的查詢沒有批量查詢;
  • ORM 的對象太多重復(fù)的生成,導(dǎo)致性能損耗;
  • 屬性讀取后沒有復(fù)用,導(dǎo)致在遍歷次數(shù)較大的循環(huán)體內(nèi)頻繁 getAttr,成本被放大;
  • 那么對癥下藥就是:

    def get_group_profile_settings(project_code, gids): # 獲取 Mysql ORM 操作對象 ProfileSetting = unpurview(sandman.endpoint_class('profile_settings')) session = get_postman_session() # 批量查詢 并將 filter 提到循環(huán)之外 query_results = query_instance.filter( ProfileSetting.name.in_(project_code + ':' + gid for gid in gids) ).all() # 對全部的查詢結(jié)果再單條處理 profile_settings = {} for result in query_results: if not result: continue resultresult = result.as_dict() gid = result['name'].split(':')[1] tag_indexes = result.get('tag_indexes') profile_settings[gid] = { 'tag_indexes': tag_indexes, 'interval': result['interval'], 'status': result['status'], 'profile_machines': result['profile_machines'], 'thread_settings': result['thread_settings'] } ...(省略) return profile_settings

    優(yōu)化后的火焰圖:

    對比下優(yōu)化前的相同位置的火焰圖:

    明顯的優(yōu)化點:優(yōu)化前的,最底部的 utils.py:get_group_profile_settings 和 數(shù)據(jù)庫相關(guān)的熱點大大縮減。

    優(yōu)化效果

    同一個項目的接口的響應(yīng)時長從 37.6 s 優(yōu)化成 1.47s,具體的截圖:

    優(yōu)化總結(jié)

    如同一句名言:

    如果一個數(shù)據(jù)結(jié)構(gòu)足夠優(yōu)秀,那么它是不需要多好的算法。

    在優(yōu)化功能的時候,最快的優(yōu)化就是:去掉那個功能!

    其次快就是調(diào)整那個功能觸發(fā)的 頻率 或者 復(fù)雜度!

    從上到下,從用戶使用場景去考慮這個功能優(yōu)化方式,往往會帶來更加簡單高效的結(jié)果,嘿嘿!

    當(dāng)然很多時候我們是無法那么幸運的,如果我們實在無法去掉或者調(diào)整,那么就發(fā)揮做程序猿的價值咯:Profile

    針對 Python 可以嘗試:cProflile + gprof2dot

    而針對 Go 可以使用: pprof + go-torch

    很多時候看到的代碼問題都不一定是真正的性能瓶頸,需要結(jié)合工具來客觀分析,這樣才能有效直擊痛點!

    其實這個 1.47s,其實還不是最好的結(jié)果,還可以有更多優(yōu)化的空間,比如:

  • 前端渲染和呈現(xiàn)的方式,因為整個表格是有很多數(shù)據(jù)組裝后再呈現(xiàn)的,響應(yīng)慢的單元格可以默認(rèn)先顯示 菊花,數(shù)據(jù)返回再更新;
  • 火焰圖看到還有挺多細(xì)節(jié)可以優(yōu)化,可以替換請求數(shù)據(jù)的外部接口,比如再優(yōu)化徹底 GetAttr 相關(guān)的邏輯;
  • 更極端就是直接 Python 轉(zhuǎn) GO;
  • 但是這些優(yōu)化已經(jīng)不是那么迫切了,因為這個 1.47s 是比較大型項目的優(yōu)化結(jié)果了,絕大部分的項目其實不到 1s 就能返回

    再優(yōu)化可能付出更大成本,而結(jié)果可能也只是從 500ms 到 400ms 而已,結(jié)果并不那么高性價比。

    所以我們一定要時刻清晰自己優(yōu)化的目標(biāo),時刻考慮 投入產(chǎn)出比,在有限的時間做出比較高的價值(如果有空閑時間當(dāng)然可以盡情干到底)

    原文轉(zhuǎn)自:https://developer.51cto.com/art/202008/623383.htm#topx
    作者:佚名 來源:戀習(xí)Python

    總結(jié)

    以上是生活随笔為你收集整理的code blocks代码性能分析_记一次Python Web接口优化,性能提升25倍!的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。