日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Tushare财经数据调取方法(行情数据)

發布時間:2023/12/16 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Tushare财经数据调取方法(行情数据) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Tushare財經數據調取方法(行情數據)

Tushare網站

二、行情數據

1.日線行情:本接口是未復權行情,停牌期間不提供數據。

import tushare as ts pro = ts.pro_api() #單個股票 df = pro.daily(ts_code='000001.SZ', start_date='20180701', end_date='20180718') df ts_codetrade_dateopenhighlowclosepre_closechangepct_chgvolamount
0000001.SZ201807188.758.858.698.708.72-0.02-0.23525152.77460697.377
1000001.SZ201807178.748.758.668.728.73-0.01-0.11375356.33326396.994
2000001.SZ201807168.858.908.698.738.88-0.15-1.69689845.58603427.713
3000001.SZ201807138.928.948.828.888.880.000.00603378.21535401.175
4000001.SZ201807128.608.978.588.888.640.242.781140492.311008658.828
5000001.SZ201807118.768.838.688.788.98-0.20-2.23851296.70744765.824
6000001.SZ201807109.029.028.898.989.03-0.05-0.55896862.02803038.965
7000001.SZ201807098.699.038.689.038.660.374.271409954.601255007.609
8000001.SZ201807068.618.788.458.668.600.060.70988282.69852071.526
9000001.SZ201807058.628.738.558.608.61-0.01-0.12835768.77722169.579
10000001.SZ201807048.638.758.618.618.67-0.06-0.69711153.37617278.559
11000001.SZ201807038.698.708.458.678.610.060.701274838.571096657.033
12000001.SZ201807029.059.058.558.619.09-0.48-5.281315520.131158545.868
#多個股票 df = pro.daily(ts_code='000001.SZ,600000.SH', start_date='20180701', end_date='20180718') df ts_codetrade_dateopenhighlowclosepre_closechangepct_chgvolamount
0600000.SH201807189.519.649.489.519.440.070.74189227.00180858.003
1000001.SZ201807188.758.858.698.708.72-0.02-0.23525152.77460697.377
2000001.SZ201807178.748.758.668.728.73-0.01-0.11375356.33326396.994
3600000.SH201807179.419.489.389.449.410.030.32137134.95129512.091
4000001.SZ201807168.858.908.698.738.88-0.15-1.69689845.58603427.713
5600000.SH201807169.509.549.349.419.49-0.08-0.84144141.19135697.106
6600000.SH201807139.579.589.469.499.470.020.21150263.39142708.347
7000001.SZ201807138.928.948.828.888.880.000.00603378.21535401.175
8000001.SZ201807128.608.978.588.888.640.242.781140492.311008658.828
9600000.SH201807129.419.619.399.579.380.192.03197048.37188206.858
10000001.SZ201807118.768.838.688.788.98-0.20-2.23851296.70744765.824
11600000.SH201807119.379.449.329.389.57-0.19-1.99152039.33142450.919
12000001.SZ201807109.029.028.898.989.03-0.05-0.55896862.02803038.965
13600000.SH201807109.619.659.509.579.60-0.03-0.31124028.37118668.133
14000001.SZ201807098.699.038.689.038.660.374.271409954.601255007.609
15600000.SH201807099.379.639.379.609.370.232.45221725.65212109.327
16600000.SH201807069.319.439.179.379.260.111.19225944.43210564.106
17000001.SZ201807068.618.788.458.668.600.060.70988282.69852071.526
18600000.SH201807059.269.359.229.269.31-0.05-0.54164954.38152978.661
19000001.SZ201807058.628.738.558.608.61-0.01-0.12835768.77722169.579
20600000.SH201807049.349.429.289.319.35-0.04-0.43144647.77135000.876
21000001.SZ201807048.638.758.618.618.67-0.06-0.69711153.37617278.559
22000001.SZ201807038.698.708.458.678.610.060.701274838.571096657.033
23600000.SH201807039.299.389.209.359.290.060.65241235.51224816.757
24600000.SH201807029.559.559.239.299.56-0.27-2.82226690.89212743.905
25000001.SZ201807029.059.058.558.619.09-0.48-5.281315520.131158545.868

2.周線行情:獲取A股周線行情

df = pro.weekly(ts_code='000001.SZ', start_date='20180101', end_date='20181101', fields='ts_code,trade_date,open,high,low,close,vol,amount') df ts_codetrade_datecloseopenhighlowvolamount
0000001.SZ2018102611.1810.8111.4610.719.062500e+081.002282e+10
1000001.SZ2018101910.7610.3910.789.927.235320e+087.482596e+09
2000001.SZ2018101210.3010.7010.799.707.257597e+087.483906e+09
3000001.SZ2018092811.0510.5211.2710.485.458134e+085.904901e+09
4000001.SZ2018092110.679.8010.709.685.120305e+085.225262e+09
5000001.SZ201809149.8410.0110.109.813.534262e+083.501724e+09
6000001.SZ2018090710.0110.0910.559.934.708304e+084.796533e+09
7000001.SZ2018083110.1310.0210.439.976.715868e+086.858804e+09
8000001.SZ2018082410.038.9010.288.876.697714e+086.358840e+09
9000001.SZ201808178.819.129.168.643.206923e+082.854248e+09
10000001.SZ201808109.238.949.358.883.054339e+082.787629e+09
11000001.SZ201808038.919.329.508.883.648566e+083.363448e+09
12000001.SZ201807279.259.049.599.005.170189e+084.826484e+09
13000001.SZ201807209.118.859.208.613.806004e+083.371040e+09
14000001.SZ201807138.888.699.038.584.901984e+084.346872e+09
15000001.SZ201807068.669.059.058.455.125564e+084.446723e+09
16000001.SZ201806299.099.919.928.875.150576e+084.764107e+09
17000001.SZ201806229.8510.0510.159.763.827401e+083.800475e+09
18000001.SZ2018061510.1710.0610.299.924.280360e+084.315074e+09
19000001.SZ2018060810.1210.2310.4610.064.324341e+084.424459e+09
20000001.SZ2018060110.1910.5810.6610.024.167914e+084.280512e+09
21000001.SZ2018052510.5911.0711.1110.553.625909e+083.897568e+09
22000001.SZ2018051810.9611.0911.2310.763.587800e+083.947275e+09
23000001.SZ2018051111.0110.7011.1510.644.300377e+084.705948e+09
24000001.SZ2018050410.6810.9711.0310.573.182388e+083.429873e+09
25000001.SZ2018042710.8511.3011.9410.636.845706e+087.769357e+09
26000001.SZ2018042011.3511.4711.6911.036.012632e+086.824983e+09
27000001.SZ2018041311.5710.8011.9210.737.035101e+088.082163e+09
28000001.SZ2018040410.8710.8711.0110.513.602551e+083.880409e+09
29000001.SZ2018033010.9011.1511.2010.555.669332e+086.203168e+09
30000001.SZ2018032311.3411.6612.1210.925.839767e+086.794436e+09
31000001.SZ2018031611.6412.1512.2211.645.105241e+086.080941e+09
32000001.SZ2018030912.0911.9312.3411.774.965548e+085.985965e+09
33000001.SZ2018030211.9512.7712.8511.855.095855e+086.233384e+09
34000001.SZ2018022312.6112.2512.7912.252.282069e+082.851748e+09
35000001.SZ2018021412.0011.7812.2111.563.391151e+084.032539e+09
36000001.SZ2018020911.6913.8014.5711.381.322335e+091.750926e+10
37000001.SZ2018020214.0514.0514.3013.538.115143e+081.129147e+10
38000001.SZ2018012614.0514.6015.0814.001.145692e+091.660992e+10
39000001.SZ2018011914.8013.5115.1313.501.294241e+091.865851e+10
40000001.SZ2018011213.5513.2513.6812.868.704112e+081.152740e+10
41000001.SZ2018010513.3013.3513.9313.138.108913e+081.092060e+10
df = pro.weekly(trade_date='20181123', fields='ts_code,trade_date,open,high,low,close,vol,amount') df ts_codetrade_datecloseopenhighlowvolamount
0000001.SZ2018112310.3210.5710.8810.31426154795.04.529963e+09
1000002.SZ2018112324.9024.7026.6824.68224382883.05.769860e+09
2000004.SZ2018112316.4917.4918.1516.492658044.04.556597e+07
3000005.SZ201811232.903.173.222.8859830345.01.832934e+08
4000006.SZ201811235.275.675.945.25123699441.06.935153e+08
...........................
3522603993.SH201811233.874.164.233.85537540699.02.189281e+09
3523603996.SH201811238.118.949.137.9628956289.02.527451e+08
3524603997.SH201811238.438.368.727.8819952764.01.676455e+08
3525603998.SH201811235.265.775.865.2134548883.01.947678e+08
3526603999.SH201811235.205.275.454.9830761287.01.614327e+08

3527 rows × 8 columns

3.月線行情:獲取A股月線數據

df = pro.monthly(ts_code='000001.SZ', start_date='20180101', end_date='20181101', fields='ts_code,trade_date,open,high,low,close,vol,amount') df ts_codetrade_datecloseopenhighlowvolamount
0000001.SZ2018103110.9110.7011.469.702.780156e+092.960878e+10
1000001.SZ2018092811.0510.0911.279.681.882100e+091.942842e+10
2000001.SZ2018083110.139.4210.438.642.189687e+092.088672e+10
3000001.SZ201807319.429.059.598.452.043028e+091.832737e+10
4000001.SZ201806299.0910.1510.468.871.817989e+091.791251e+10
5000001.SZ2018053110.1810.9711.2310.021.826718e+091.965278e+10
6000001.SZ2018042710.8510.8711.9410.512.349599e+092.655691e+10
7000001.SZ2018033010.9011.9212.3410.552.312997e+092.692560e+10
8000001.SZ2018022812.0513.9514.5711.382.562447e+093.322504e+10
9000001.SZ2018013114.0513.3515.1312.864.614538e+096.454870e+10
df = pro.monthly(trade_date='20181031', fields='ts_code,trade_date,open,high,low,close,vol,amount') df ts_codetrade_datecloseopenhighlowvolamount
0000001.SZ2018103110.9110.7011.469.702.780156e+092.960878e+10
1000002.SZ2018103124.2322.9524.7520.401.131501e+092.528377e+10
2000004.SZ2018103115.5417.4917.4914.703.690866e+065.919159e+07
3000005.SZ201810312.732.902.912.421.251723e+083.426416e+08
4000006.SZ201810315.075.495.494.513.302938e+081.650338e+09
...........................
3506603993.SH201810314.074.454.473.442.220735e+098.620470e+09
3507603996.SH201810317.788.648.706.721.074282e+088.123262e+08
3508603997.SH201810318.299.789.787.201.047243e+088.530102e+08
3509603998.SH201810315.005.745.744.535.361062e+072.659748e+08
3510603999.SH201810314.825.085.753.941.155360e+085.708665e+08

3511 rows × 8 columns

4.A股復權行情

#取000001的前復權行情 df = ts.pro_bar(ts_code='000001.SZ', adj='qfq', start_date='20180101', end_date='20181011') df ts_codetrade_dateopenhighlowclosepre_closechangepct_chgvolamount
0000001.SZ2018101110.050010.16009.70009.860010.4500-0.5900-5.64591995143.831994186.611
1000001.SZ2018101010.540010.660010.380010.450010.5600-0.1100-1.0417995200.081045666.180
2000001.SZ2018100910.460010.700010.390010.560010.45000.11001.05261064084.261117946.550
3000001.SZ2018100810.700010.790010.450010.450011.0500-0.6000-5.42991686358.521793455.283
4000001.SZ2018092810.780011.270010.780011.050010.74000.31002.88642110242.672331358.288
....................................
182000001.SZ2018010813.038813.078212.655012.753413.0880-0.3346-2.55652158620.812806099.169
183000001.SZ2018010512.999413.137212.940413.088013.03880.04920.37731210312.721603289.517
184000001.SZ2018010413.107713.156912.920713.038813.1175-0.0787-0.60001854509.482454543.516
185000001.SZ2018010313.511113.639112.989613.117513.4816-0.3641-2.70072962498.384006220.766
186000001.SZ2018010213.137213.708013.107713.481613.08800.39363.00732081592.552856543.822

187 rows × 11 columns

#取000001的后復權行情 df = ts.pro_bar(ts_code='000001.SZ', adj='hfq', start_date='20180101', end_date='20181011') df ts_codetrade_dateopenhighlowclosepre_closechangepct_chgvolamount
0000001.SZ201810111085.71161097.59501047.90071065.18571128.9239-63.7382-5.64591995143.831994186.611
1000001.SZ201810101138.64671151.61051121.36181128.92391140.8074-11.8835-1.0417995200.081045666.180
2000001.SZ201810091130.00431155.93171122.44211140.80741128.923911.88351.05261064084.261117946.550
3000001.SZ201810081155.93171165.65451128.92391128.92391193.7426-64.8187-5.42991686358.521793455.283
4000001.SZ201809281164.57421217.50941164.57421193.74261160.252933.48972.88642110242.672331358.288
....................................
182000001.SZ201801081408.59421412.84661367.13371377.76461413.9097-36.1451-2.55642158620.812806099.169
183000001.SZ201801051404.34191419.22511397.96331413.90971408.59425.31550.37741210312.721603289.517
184000001.SZ201801041416.03591421.35131395.83721408.59421417.0990-8.5048-0.60021854509.482454543.516
185000001.SZ201801031459.62261473.44271403.27881417.09901456.4333-39.3343-2.70072962498.384006220.766
186000001.SZ201801021419.22511480.88441416.03591456.43331413.909742.52363.00752081592.552856543.822

187 rows × 11 columns

#取000001的周線前復權行情 df = ts.pro_bar( ts_code='000001.SZ', freq='W', adj='qfq', start_date='20180101', end_date='20181011') df ts_codetrade_datecloseopenhighlowpre_closechangepct_chgvolamount
0000001.SZ2018092811.050010.520011.270010.480010.67000.38003.56145.458134e+085.904901e+09
1000001.SZ2018092110.67009.800010.70009.68009.84000.83008.43505.120305e+085.225262e+09
2000001.SZ201809149.840010.010010.10009.810010.0100-0.1700-1.69833.534262e+083.501724e+09
3000001.SZ2018090710.010010.090010.55009.930010.1300-0.1200-1.18464.708304e+084.796533e+09
4000001.SZ2018083110.130010.020010.43009.970010.03000.10000.99706.715868e+086.858804e+09
5000001.SZ2018082410.03008.900010.28008.87008.81001.220013.84796.697714e+086.358840e+09
6000001.SZ201808178.81009.12009.16008.64009.2300-0.4200-4.55043.206923e+082.854248e+09
7000001.SZ201808109.23008.94009.35008.88008.91000.32003.59153.054339e+082.787629e+09
8000001.SZ201808038.91009.32009.50008.88009.2500-0.3400-3.67573.648566e+083.363448e+09
9000001.SZ201807279.25009.04009.59009.00009.11000.14001.53685.170189e+084.826484e+09
10000001.SZ201807209.11008.85009.20008.61008.88000.23002.59013.806004e+083.371040e+09
11000001.SZ201807138.88008.69009.03008.58008.66000.22002.54044.901984e+084.346872e+09
12000001.SZ201807068.52208.90578.90578.31538.9451-0.4231-4.73005.125564e+084.446723e+09
13000001.SZ201806298.94519.75209.76198.72869.6930-0.7479-7.71595.150576e+084.764107e+09
14000001.SZ201806229.69309.88989.98829.604410.0079-0.3149-3.14653.827401e+083.800475e+09
15000001.SZ2018061510.00799.899610.12609.76199.95870.04920.49404.280360e+084.315074e+09
16000001.SZ201806089.958710.066910.29339.899610.0276-0.0689-0.68714.324341e+084.424459e+09
17000001.SZ2018060110.027610.411410.49019.860310.4212-0.3936-3.77694.167914e+084.280512e+09
18000001.SZ2018052510.421210.893510.932910.381810.7853-0.3641-3.37593.625909e+083.897568e+09
19000001.SZ2018051810.785310.913211.051010.588510.8345-0.0492-0.45413.587800e+083.947275e+09
20000001.SZ2018051110.834510.529410.972310.470410.50980.32473.08954.300377e+084.705948e+09
21000001.SZ2018050410.509810.795110.854210.401510.6771-0.1673-1.56693.182388e+083.429873e+09
22000001.SZ2018042710.677111.119911.749710.460611.1691-0.4920-4.40506.845706e+087.769357e+09
23000001.SZ2018042011.169111.287211.503710.854211.3856-0.2165-1.90156.012632e+086.824983e+09
24000001.SZ2018041311.385610.627811.730010.559010.69670.68896.44037.035101e+088.082163e+09
25000001.SZ2018040410.696710.696710.834510.342510.7263-0.0296-0.27603.602551e+083.880409e+09
26000001.SZ2018033010.726310.972311.021510.381811.1592-0.4329-3.87935.669332e+086.203168e+09
27000001.SZ2018032311.159211.474111.926810.745911.4545-0.2953-2.57805.839767e+086.794436e+09
28000001.SZ2018031611.454511.956312.025211.454511.8973-0.4428-3.72195.105241e+086.080941e+09
29000001.SZ2018030911.897311.739812.143311.582411.75950.13781.17184.965548e+085.985965e+09
30000001.SZ2018030211.759512.566412.645211.661112.4090-0.6495-5.23415.095855e+086.233384e+09
31000001.SZ2018022312.409012.054712.586112.054711.80870.60035.08352.282069e+082.851748e+09
32000001.SZ2018021411.808711.592212.015411.375711.50370.30502.65133.391151e+084.032539e+09
33000001.SZ2018020911.503713.580014.337811.198613.8260-2.3223-16.79661.322335e+091.750926e+10
34000001.SZ2018020213.826013.826014.072113.314313.82600.00000.00008.115143e+081.129147e+10
35000001.SZ2018012613.826014.367314.839613.776814.5641-0.7381-5.06791.145692e+091.660992e+10
36000001.SZ2018011914.564113.294714.888813.284813.33401.23019.22531.294241e+091.865851e+10
37000001.SZ2018011213.334013.038813.461912.655013.08800.24601.87968.704112e+081.152740e+10
38000001.SZ2018010513.088013.137213.708012.920713.08800.00000.00008.108913e+081.092060e+10
#取000001的周線后復權行情 df = ts.pro_bar(ts_code='000001.SZ', freq='W', adj='hfq', start_date='20180101', end_date='20181011') df ts_codetrade_datecloseopenhighlowpre_closechangepct_chgvolamount
0000001.SZ201809281193.74261136.48611217.50941132.16491152.690841.05183.56145.458134e+085.904901e+09
1000001.SZ201809211152.69081058.70381155.93171045.74011063.025089.66588.43505.120305e+085.225262e+09
2000001.SZ201809141063.02501081.39031091.11311059.78411081.3903-18.3653-1.69833.534262e+083.501724e+09
3000001.SZ201809071081.39031090.03281139.72711072.74781094.3540-12.9637-1.18464.708304e+084.796533e+09
4000001.SZ201808311094.35401082.47061126.76331077.06911083.550910.80310.99706.715868e+086.858804e+09
5000001.SZ201808241083.5509961.47591110.5587958.2350951.7531131.797813.84796.697714e+086.358840e+09
6000001.SZ20180817951.7531985.2427989.5640933.3878997.1261-45.3730-4.55043.206923e+082.854248e+09
7000001.SZ20180810997.1261965.79711010.0899959.3153962.556234.56993.59153.054339e+082.787629e+09
8000001.SZ20180803962.55621006.84891026.2945959.3153999.2868-36.7306-3.67573.648566e+083.363448e+09
9000001.SZ20180727999.2868976.60021036.0173972.2790984.162415.12441.53685.170189e+084.826484e+09
10000001.SZ20180720984.1624956.0743993.8852930.1469959.315324.84712.59013.806004e+083.371040e+09
11000001.SZ20180713959.3153938.7894975.5199926.9060935.548523.76682.54044.901984e+084.346872e+09
12000001.SZ20180706920.6359962.0965962.0965898.3110966.3488-45.7129-4.73055.125564e+084.446723e+09
13000001.SZ20180629966.34881053.52221054.5853942.96081047.1436-80.7948-7.71575.150576e+084.764107e+09
14000001.SZ201806221047.14361068.40541079.03641037.57581081.1625-34.0189-3.14653.827401e+083.800475e+09
15000001.SZ201806151081.16251069.46851093.91961054.58531075.84715.31540.49414.280360e+084.315074e+09
16000001.SZ201806081075.84711087.54111111.99211069.46851083.2887-7.4416-0.68694.324341e+084.424459e+09
17000001.SZ201806011083.28871124.74921133.25391065.21621125.8123-42.5236-3.77714.167914e+084.280512e+09
18000001.SZ201805251125.81231176.84061181.09301121.56001165.1466-39.3343-3.37593.625909e+083.897568e+09
19000001.SZ201805181165.14661178.96681193.85011143.88481170.4621-5.3155-0.45413.587800e+083.947275e+09
20000001.SZ201805111170.46211137.50631185.34541131.12781135.380135.08203.08994.300377e+084.705948e+09
21000001.SZ201805041135.38011166.20971172.58831123.68611153.4526-18.0725-1.56683.182388e+083.429873e+09
22000001.SZ201804271153.45261201.29171269.32951130.06471206.6072-53.1546-4.40536.845706e+087.769357e+09
23000001.SZ201804201206.60721219.36421242.75221172.58831229.9951-23.3879-1.90156.012632e+086.824983e+09
24000001.SZ201804131229.99511148.13721267.20331140.69561155.578874.41636.43977.035101e+088.082163e+09
25000001.SZ201804041155.57881155.57881170.46211117.30761158.7681-3.1893-0.27523.602551e+083.880409e+09
26000001.SZ201803301158.76811185.34541190.66081121.56001205.5441-46.7760-3.88015.669332e+086.203168e+09
27000001.SZ201803231205.54411239.56291288.46511160.89431237.4368-31.8927-2.57735.839767e+086.794436e+09
28000001.SZ201803161237.43681291.65441299.09601237.43681285.2758-47.8390-3.72215.105241e+086.080941e+09
29000001.SZ201803091285.27581268.26641311.85311251.25691270.392514.88331.17164.965548e+085.985965e+09
30000001.SZ201803021270.39251357.56591366.07061259.76161340.5565-70.1640-5.23395.095855e+086.233384e+09
31000001.SZ201802231340.55651302.28521359.69211302.28521275.708064.84855.08332.282069e+082.851748e+09
32000001.SZ201802141275.70801252.32001298.03291228.93201242.752232.95582.65183.391151e+084.032539e+09
33000001.SZ201802091242.75221467.06421548.92211209.79641493.6415-250.8893-16.79721.322335e+091.750926e+10
34000001.SZ201802021493.64151493.64151520.21871438.36081493.64150.00000.00008.115143e+081.129147e+10
35000001.SZ201801261493.64151552.11141603.13971488.32601573.3732-79.7317-5.06761.145692e+091.660992e+10
36000001.SZ201801191573.37321436.23461608.45521435.17151440.4869132.88639.22511.294241e+091.865851e+10
37000001.SZ201801121440.48691408.59421454.30711367.13371413.909726.57721.87978.704112e+081.152740e+10
38000001.SZ201801051413.90971419.22511480.88441395.83721413.90970.00000.00008.108913e+081.092060e+10
#取000001的月線前復權行情 df = ts.pro_bar(ts_code='000001.SZ', freq='M', adj='qfq', start_date='20180101', end_date='20181011') df ts_codetrade_datecloseopenhighlowpre_closechangepct_chgvolamount
0000001.SZ2018092811.050010.090011.27009.680010.13000.92009.08191.882100e+091.942842e+10
1000001.SZ2018083110.13009.420010.43008.64009.42000.71007.53722.189687e+092.088672e+10
2000001.SZ201807319.42009.05009.59008.45009.09000.33003.63042.043028e+091.832737e+10
3000001.SZ201806298.94519.988210.29338.728610.0177-1.0726-10.70701.817989e+091.791251e+10
4000001.SZ2018053110.017710.795111.05109.860310.6771-0.6594-6.17581.826718e+091.965278e+10
5000001.SZ2018042710.677110.696711.749710.342510.7263-0.0492-0.45872.349599e+092.655691e+10
6000001.SZ2018033010.726311.730012.143310.381811.8579-1.1316-9.54302.312997e+092.692560e+10
7000001.SZ2018022811.857913.727614.337811.198613.8260-1.9681-14.23482.562447e+093.322504e+10
8000001.SZ2018013113.826013.137214.888812.655013.08800.73805.63884.614538e+096.454870e+10
#取000001的月線后復權行情 df = ts.pro_bar(ts_code='000001.SZ', freq='M', adj='hfq', start_date='20180101', end_date='20181011') df ts_codetrade_datecloseopenhighlowpre_closechangepct_chgvolamount
0000001.SZ201809281193.74261090.03281217.50941045.74011094.354099.38869.08191.882100e+091.942842e+10
1000001.SZ201808311094.35401017.65201126.7633933.38781017.652076.70207.53722.189687e+092.088672e+10
2000001.SZ201807311017.6520977.68061036.0173912.8619982.001835.65023.63042.043028e+091.832737e+10
3000001.SZ20180629966.34881079.03641111.9921942.96081082.2256-115.8768-10.70731.817989e+091.791251e+10
4000001.SZ201805311082.22561166.20971193.85011065.21621153.4526-71.2270-6.17511.826718e+091.965278e+10
5000001.SZ201804271153.45261155.57881269.32951117.30761158.7681-5.3155-0.45872.349599e+092.655691e+10
6000001.SZ201803301158.76811267.20331311.85311121.56001281.0235-122.2554-9.54362.312997e+092.692560e+10
7000001.SZ201802281281.02351483.01051548.92211209.79641493.6415-212.6180-14.23492.562447e+093.322504e+10
8000001.SZ201801311493.64151419.22511608.45521367.13371413.909779.73185.63914.614538e+096.454870e+10

5.復權因子

#提取000001全部復權因子 df = pro.adj_factor(ts_code='000001.SZ', trade_date='') df ts_codetrade_dateadj_factor
0000001.SZ20210312111.048
1000001.SZ20210311111.048
2000001.SZ20210310111.048
3000001.SZ20210309111.048
4000001.SZ20210308111.048
............
4995000001.SZ2000080421.662
4996000001.SZ2000080321.662
4997000001.SZ2000080221.662
4998000001.SZ2000080121.662
4999000001.SZ2000073121.662

5000 rows × 3 columns

#提取2018年7月18日復權因子 df = pro.adj_factor(ts_code='', trade_date='20180718') df ts_codetrade_dateadj_factor
0000001.SZ20180718108.031
1000002.SZ20180718137.300
2000004.SZ201807184.064
3000005.SZ201807189.268
4000006.SZ2018071834.226
............
3523603993.SH201807183.269
3524603996.SH201807181.536
3525603997.SH201807181.569
3526603998.SH201807183.934
3527603999.SH201807182.436

3528 rows × 3 columns

總結

以上是生活随笔為你收集整理的Tushare财经数据调取方法(行情数据)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。