日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

Object Detection(目标检测神文)

發布時間:2023/12/15 综合教程 26 生活家
生活随笔 收集整理的這篇文章主要介紹了 Object Detection(目标检测神文) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Object Detection(目標檢測神文)

2018年08月21日 14:25:28
Mars_WH
閱讀數 23382

標簽:
object detect faster R-CNN SSD YOLO MTCNN
更多

個人分類:
目標檢測

目標檢測神文,非常全而且持續在更新。轉發自:https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html,如有侵權聯系刪除。
更新時間:
20190226
不再更新,最新檢測文章請移步:https://blog.csdn.net/hw5226349/article/details/88733364
我會跟進原作者博客持續更新,加入自己對目標檢測領域的一些新研究及論文解讀。博客根據需求直接進行關鍵字搜索,例如2018,可找到最新論文。

文章目錄

Papers損失函數[CVPR2019] Generalized Intersection over Union: A Metric and A Loss for Bounding Box RegressionDeep Neural Networks for Object DetectionOverFeat: Integrated Recognition, Localization and Detection using Convolutional NetworksR-CNNRich feature hierarchies for accurate object detection and semantic segmentationFast R-CNNFast R-CNNA-Fast-RCNN: Hard Positive Generation via Adversary for Object DetectionFaster R-CNNFaster R-CNN: Towards Real-Time Object Detection with Region Proposal NetworksR-CNN minus RFaster R-CNN in MXNet with distributed implementation and data parallelizationContextual Priming and Feedback for Faster R-CNNAn Implementation of Faster RCNN with Study for Region SamplingInterpretable R-CNN[AAAI2019]Object Detection based on Region Decomposition and AssemblyLight-Head R-CNNLight-Head R-CNN: In Defense of Two-Stage Object DetectorCascade R-CNN: Delving into High Quality Object DetectionMultiBoxScalable Object Detection using Deep Neural NetworksScalable, High-Quality Object DetectionSPP-NetSpatial Pyramid Pooling in Deep Convolutional Networks for Visual RecognitionDeepID-Net: Deformable Deep Convolutional Neural Networks for Object DetectionObject Detectors Emerge in Deep Scene CNNssegDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object DetectionObject Detection Networks on Convolutional Feature MapsImproving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured PredictionDeepBox: Learning Objectness with Convolutional NetworksMR-CNNObject detection via a multi-region & semantic segmentation-aware CNN modelYOLOYou Only Look Once: Unified, Real-Time Object Detectiondarkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++Start Training YOLO with Our Own DataYOLO: Core ML versus MPSNNGraphTensorFlow YOLO object detection on AndroidComputer Vision in iOS – Object DetectionYOLOv2YOLO9000: Better, Faster, Strongerdarknet_scriptsYolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2LightNet: Bringing pjreddie’s DarkNet out of the shadowsYOLO v2 Bounding Box ToolYOLOv3YOLOv3: An Incremental ImprovementYOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU ComputersAttentionNet: Aggregating Weak Directions for Accurate Object DetectionDenseBoxDenseBox: Unifying Landmark Localization with End to End Object DetectionSSDSSD: Single Shot MultiBox DetectorDSSDDSSD : Deconvolutional Single Shot DetectorEnhancement of SSD by concatenating feature maps for object detectionContext-aware Single-Shot DetectorFeature-Fused SSD: Fast Detection for Small ObjectsFSSDFSSD: Feature Fusion Single Shot Multibox DetectorWeaving Multi-scale Context for Single Shot DetectorESSDExtend the shallow part of Single Shot MultiBox Detector via Convolutional Neural NetworkTiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object DetectionMDSSD: Multi-scale Deconvolutional Single Shot Detector for small objectsInside-Outside Net (ION)Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural NetworksAdaptive Object Detection Using Adjacency and Zoom PredictionG-CNN: an Iterative Grid Based Object DetectorFactors in Finetuning Deep Model for object detectionFactors in Finetuning Deep Model for Object Detection with Long-tail DistributionWe don’t need no bounding-boxes: Training object class detectors using only human verificationHyperNet: Towards Accurate Region Proposal Generation and Joint Object DetectionA MultiPath Network for Object DetectionCRAFTCRAFT Objects from ImagesOHEMTraining Region-based Object Detectors with Online Hard Example MiningS-OHEM: Stratified Online Hard Example Mining for Object DetectionExploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection ClassifiersR-FCNR-FCN: Object Detection via Region-based Fully Convolutional NetworksR-FCN-3000 at 30fps: Decoupling Detection and ClassificationRecycle deep features for better object detectionMS-CNNA Unified Multi-scale Deep Convolutional Neural Network for Fast Object DetectionMulti-stage Object Detection with Group Recursive LearningSubcategory-aware Convolutional Neural Networks for Object Proposals and DetectionPVANETPVANet: Lightweight Deep Neural Networks for Real-time Object DetectionGBD-NetGated Bi-directional CNN for Object DetectionCrafting GBD-Net for Object DetectionStuffNet: Using ‘Stuff’ to Improve Object DetectionGeneralized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic SceneHierarchical Object Detection with Deep Reinforcement LearningLearning to detect and localize many objects from few examplesSpeed/accuracy trade-offs for modern convolutional object detectorsSqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous DrivingFeature Pyramid Network (FPN)Feature Pyramid Networks for Object DetectionAction-Driven Object Detection with Top-Down Visual AttentionsBeyond Skip Connections: Top-Down Modulation for Object DetectionWide-Residual-Inception Networks for Real-time Object DetectionAttentional Network for Visual Object DetectionLearning Chained Deep Features and Classifiers for Cascade in Object DetectionDeNet: Scalable Real-time Object Detection with Directed Sparse SamplingDiscriminative Bimodal Networks for Visual Localization and Detection with Natural Language QueriesSpatial Memory for Context Reasoning in Object DetectionAccurate Single Stage Detector Using Recurrent Rolling ConvolutionDeep Occlusion Reasoning for Multi-Camera Multi-Target DetectionLCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded SystemsPoint Linking Network for Object DetectionPerceptual Generative Adversarial Networks for Small Object DetectionFew-shot Object DetectionYes-Net: An effective Detector Based on Global InformationSMC Faster R-CNN: Toward a scene-specialized multi-object detectorTowards lightweight convolutional neural networks for object detectionRON: Reverse Connection with Objectness Prior Networks for Object DetectionMimicking Very Efficient Network for Object DetectionResidual Features and Unified Prediction Network for Single Stage DetectionDeformable Part-based Fully Convolutional Network for Object DetectionAdaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object DetectorsRecurrent Scale Approximation for Object Detection in CNNDSODDSOD: Learning Deeply Supervised Object Detectors from ScratchObject Detection from Scratch with Deep SupervisionFocal Loss for Dense Object DetectionFocal Loss Dense Detector for Vehicle SurveillanceCoupleNet: Coupling Global Structure with Local Parts for Object DetectionIncremental Learning of Object Detectors without Catastrophic ForgettingZoom Out-and-In Network with Map Attention Decision for Region Proposal and Object DetectionStairNet: Top-Down Semantic Aggregation for Accurate One Shot DetectionDynamic Zoom-in Network for Fast Object Detection in Large ImagesZero-Annotation Object Detection with Web Knowledge TransferMegDetMegDet: A Large Mini-Batch Object DetectorSingle-Shot Refinement Neural Network for Object DetectionReceptive Field Block Net for Accurate and Fast Object DetectionAn Analysis of Scale Invariance in Object Detection - SNIPFeature Selective Networks for Object DetectionLearning a Rotation Invariant Detector with Rotatable Bounding BoxScalable Object Detection for Stylized ObjectsLearning Object Detectors from Scratch with Gated Recurrent Feature PyramidsDeep Regionlets for Object DetectionTraining and Testing Object Detectors with Virtual ImagesLarge-Scale Object Discovery and Detector Adaptation from Unlabeled VideoSpot the Difference by Object DetectionLocalization-Aware Active Learning for Object DetectionObject Detection with Mask-based Feature EncodingLSTD: A Low-Shot Transfer Detector for Object DetectionDomain Adaptive Faster R-CNN for Object Detection in the WildPseudo Mask Augmented Object DetectionRevisiting RCNN: On Awakening the Classification Power of Faster RCNNDecoupled Classification Refinement: Hard False Positive Suppression for Object DetectionLearning Region Features for Object DetectionSingle-Shot Bidirectional Pyramid Networks for High-Quality Object DetectionObject Detection for Comics using Manga109 AnnotationsTask-Driven Super Resolution: Object Detection in Low-resolution ImagesTransferring Common-Sense Knowledge for Object DetectionMulti-scale Location-aware Kernel Representation for Object DetectionLoss Rank Mining: A General Hard Example Mining Method for Real-time DetectorsDetNet: A Backbone network for Object DetectionRobust Physical Adversarial Attack on Faster R-CNN Object DetectorAdvDetPatch: Attacking Object Detectors with Adversarial PatchesAttacking Object Detectors via Imperceptible Patches on BackgroundPhysical Adversarial Examples for Object DetectorsQuantization Mimic: Towards Very Tiny CNN for Object DetectionObject detection at 200 Frames Per SecondObject Detection using Domain Randomization and Generative Adversarial Refinement of Synthetic ImagesSNIPER: Efficient Multi-Scale TrainingSoft Sampling for Robust Object DetectionMetaAnchor: Learning to Detect Objects with Customized AnchorsLocalization Recall Precision (LRP): A New Performance Metric for Object DetectionAuto-Context R-CNNPooling Pyramid Network for Object DetectionModeling Visual Context is Key to Augmenting Object Detection DatasetsDual Refinement Network for Single-Shot Object DetectionAcquisition of Localization Confidence for Accurate Object DetectionCornerNet: Detecting Objects as Paired KeypointsUnsupervised Hard Example Mining from Videos for Improved Object DetectionSAN: Learning Relationship between Convolutional Features for Multi-Scale Object DetectionA Survey of Modern Object Detection Literature using Deep LearningTiny-DSOD: Lightweight Object Detection for Resource-Restricted UsagesDeep Feature Pyramid Reconfiguration for Object DetectionMDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object DetectionRecent Advances in Object Detection in the Age of Deep Convolutional Neural NetworksDeep Learning for Generic Object Detection: A SurveyTraining Confidence-Calibrated Classifier for Detecting Out-of-Distribution SamplesScratchDet:Exploring to Train Single-Shot Object Detectors from ScratchFast and accurate object detection in high resolution 4K and 8K video using GPUsHybrid Knowledge Routed Modules for Large-scale Object DetectionGradient Harmonized Single-stage DetectorM2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid NetworkBAN: Focusing on Boundary Context for Object DetectionMulti-layer Pruning Framework for Compressing Single Shot MultiBox DetectorR2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor StrategyDeRPN: Taking a further step toward more general object detectionFast Efficient Object Detection Using Selective AttentionSampling Techniques for Large-Scale Object Detection from Sparsely Annotated ObjectsEfficient Coarse-to-Fine Non-Local Module for the Detection of Small ObjectsDeep Regionlets: Blended Representation and Deep Learning for Generic Object DetectionGrid R-CNNTransferable Adversarial Attacks for Image and Video Object DetectionAnchor Box Optimization for Object DetectionAutoFocus: Efficient Multi-Scale InferencePractical Adversarial Attack Against Object DetectorLearning Efficient Detector with Semi-supervised Adaptive DistillationScale-Aware Trident Networks for Object DetectionRegion Proposal by Guided AnchoringConsistent Optimization for Single-Shot Object DetectionBottom-up Object Detection by Grouping Extreme and Center PointsA Single-shot Object Detector with Feature Aggragation and EnhancementBag of Freebies for Training Object Detection Neural NetworksNon-Maximum Suppression (NMS)End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum SuppressionA convnet for non-maximum suppressionSoft-NMS – Improving Object Detection With One Line of CodeLearning non-maximum suppressionRelation Networks for Object DetectionLearning Pairwise Relationship for Multi-object Detection in Crowded ScenesDaedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial ExamplesAdversarial ExamplesAdversarial Examples that Fool DetectorsAdversarial Examples Are Not Easily Detected: Bypassing Ten Detection MethodsWeakly Supervised Object DetectionTrack and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object DetectionWeakly supervised object detection using pseudo-strong labelsSaliency Guided End-to-End Learning for Weakly Supervised Object DetectionVisual and Semantic Knowledge Transfer for Large Scale Semi-supervised Object DetectionVideo Object DetectionLearning Object Class Detectors from Weakly Annotated VideoAnalysing domain shift factors between videos and images for object detectionVideo Object RecognitionDeep Learning for Saliency Prediction in Natural VideoT-CNN: Tubelets with Convolutional Neural Networks for Object Detection from VideosObject Detection from Video Tubelets with Convolutional Neural NetworksObject Detection in Videos with Tubelets and Multi-context CuesContext Matters: Refining Object Detection in Video with Recurrent Neural NetworksCNN Based Object Detection in Large Video ImagesObject Detection in Videos with Tubelet Proposal NetworksFlow-Guided Feature Aggregation for Video Object DetectionVideo Object Detection using Faster R-CNNImproving Context Modeling for Video Object Detection and TrackingTemporal Dynamic Graph LSTM for Action-driven Video Object DetectionMobile Video Object Detection with Temporally-Aware Feature MapsTowards High Performance Video Object DetectionImpression Network for Video Object DetectionSpatial-Temporal Memory Networks for Video Object Detection3D-DETNet: a Single Stage Video-Based Vehicle DetectorObject Detection in Videos by Short and Long Range Object LinkingObject Detection in Video with Spatiotemporal Sampling NetworksTowards High Performance Video Object Detection for MobilesOptimizing Video Object Detection via a Scale-Time LatticePack and Detect: Fast Object Detection in Videos Using Region-of-Interest PackingFast Object Detection in Compressed VideoTube-CNN: Modeling temporal evolution of appearance for object detection in videoAdaScale: Towards Real-time Video Object Detection Using Adaptive ScalingObject Detection on Mobile DevicesPelee: A Real-Time Object Detection System on Mobile DevicesObject Detection in 3DVote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural NetworksComplex-YOLO: Real-time 3D Object Detection on Point CloudsFocal Loss in 3D Object Detection3D Object Detection Using Scale Invariant and Feature Reweighting Networks3D Backbone Network for 3D Object DetectionObject Detection on RGB-DLearning Rich Features from RGB-D Images for Object Detection and SegmentationDifferential Geometry Boosts Convolutional Neural Networks for Object DetectionA Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose EstimationZero-Shot Object DetectionZero-Shot DetectionZero-Shot Object DetectionZero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel ConceptsZero-Shot Object Detection by Hybrid Region EmbeddingSalient Object DetectionBest Deep Saliency Detection Models (CVPR 2016 & 2015)Large-scale optimization of hierarchical features for saliency prediction in natural imagesPredicting Eye Fixations using Convolutional Neural NetworksSaliency Detection by Multi-Context Deep LearningDeepSaliency: Multi-Task Deep Neural Network Model for Salient Object DetectionSuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object DetectionShallow and Deep Convolutional Networks for Saliency PredictionRecurrent Attentional Networks for Saliency DetectionTwo-Stream Convolutional Networks for Dynamic Saliency PredictionUnconstrained Salient Object DetectionUnconstrained Salient Object Detection via Proposal Subset OptimizationDHSNet: Deep Hierarchical Saliency Network for Salient Object DetectionSalient Object SubitizingDeeply-Supervised Recurrent Convolutional Neural Network for Saliency DetectionSaliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNsEdge Preserving and Multi-Scale Contextual Neural Network for Salient Object DetectionA Deep Multi-Level Network for Saliency PredictionVisual Saliency Detection Based on Multiscale Deep CNN FeaturesA Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency DetectionDeeply supervised salient object detection with short connectionsWeakly Supervised Top-down Salient Object DetectionSalGAN: Visual Saliency Prediction with Generative Adversarial NetworksVisual Saliency Prediction Using a Mixture of Deep Neural NetworksA Fast and Compact Salient Score Regression Network Based on Fully Convolutional NetworkSaliency Detection by Forward and Backward Cues in Deep-CNNsSupervised Adversarial Networks for Image Saliency DetectionGroup-wise Deep Co-saliency DetectionTowards the Success Rate of One: Real-time Unconstrained Salient Object DetectionAmulet: Aggregating Multi-level Convolutional Features for Salient Object DetectionLearning Uncertain Convolutional Features for Accurate Saliency DetectionDeep Edge-Aware Saliency DetectionSelf-explanatory Deep Salient Object DetectionPiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency DetectionDeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural NetsRecurrently Aggregating Deep Features for Salient Object DetectionDeep saliency: What is learnt by a deep network about saliency?Contrast-Oriented Deep Neural Networks for Salient Object DetectionSalient Object Detection by Lossless Feature ReflectionHyperFusion-Net: Densely Reflective Fusion for Salient Object DetectionVideo Saliency DetectionDeep Learning For Video Saliency DetectionVideo Salient Object Detection Using Spatiotemporal Deep FeaturesPredicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTMVisual Relationship DetectionVisual Relationship Detection with Language PriorsViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship DetectionVisual Translation Embedding Network for Visual Relation DetectionDeep Variation-structured Reinforcement Learning for Visual Relationship and Attribute DetectionDetecting Visual Relationships with Deep Relational NetworksIdentifying Spatial Relations in Images using Convolutional Neural NetworksPPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCNNatural Language Guided Visual Relationship DetectionDetecting Visual Relationships Using Box AttentionGoogle AI Open Images - Visual Relationship TrackContext-Dependent Diffusion Network for Visual Relationship DetectionA Problem Reduction Approach for Visual Relationships DetectionFace DetecitonMulti-view Face Detection Using Deep Convolutional Neural NetworksFrom Facial Parts Responses to Face Detection: A Deep Learning ApproachCompact Convolutional Neural Network Cascade for Face DetectionFace Detection with End-to-End Integration of a ConvNet and a 3D ModelCMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face DetectionTowards a Deep Learning Framework for Unconstrained Face DetectionSupervised Transformer Network for Efficient Face DetectionUnitBox: An Advanced Object Detection NetworkBootstrapping Face Detection with Hard Negative ExamplesGrid Loss: Detecting Occluded FacesA Multi-Scale Cascade Fully Convolutional Network Face DetectorMTCNNJoint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural NetworksFace Detection using Deep Learning: An Improved Faster RCNN ApproachFaceness-Net: Face Detection through Deep Facial Part ResponsesMulti-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”End-To-End Face Detection and RecognitionFace R-CNNFace Detection through Scale-Friendly Deep Convolutional NetworksScale-Aware Face DetectionDetecting Faces Using Inside Cascaded Contextual CNNMulti-Branch Fully Convolutional Network for Face DetectionSSH: Single Stage Headless Face DetectorDockerface: an easy to install and use Faster R-CNN face detector in a Docker containerFaceBoxes: A CPU Real-time Face Detector with High AccuracyS3FD: Single Shot Scale-invariant Face DetectorDetecting Faces Using Region-based Fully Convolutional NetworksAffordanceNet: An End-to-End Deep Learning Approach for Object Affordance DetectionFace Attention Network: An effective Face Detector for the Occluded FacesFeature Agglomeration Networks for Single Stage Face DetectionFace Detection Using Improved Faster RCNNPyramidBox: A Context-assisted Single Shot Face DetectorA Fast Face Detection Method via Convolutional Neural NetworkBeyond Trade-off: Accelerate FCN-based Face Detector with Higher AccuracyReal-Time Rotation-Invariant Face Detection with Progressive Calibration NetworksSFace: An Efficient Network for Face Detection in Large Scale VariationsSurvey of Face Detection on Low-quality ImagesAnchor Cascade for Efficient Face DetectionAdversarial Attacks on Face Detectors using Neural Net based Constrained OptimizationSelective Refinement Network for High Performance Face DetectionDSFD: Dual Shot Face DetectorLearning Better Features for Face Detection with Feature Fusion and Segmentation SupervisionFA-RPN: Floating Region Proposals for Face DetectionRobust and High Performance Face DetectorDAFE-FD: Density Aware Feature Enrichment for Face DetectionImproved Selective Refinement Network for Face DetectionRevisiting a single-stage method for face detectionDetect Small FacesFinding Tiny FacesDetecting and counting tiny facesSeeing Small Faces from Robust Anchor’s PerspectiveFace-MagNet: Magnifying Feature Maps to Detect Small FacesRobust Face Detection via Learning Small Faces on Hard ImagesSFA: Small Faces Attention Face DetectorPerson Head DetectionContext-aware CNNs for person head detectionDetecting Heads using Feature Refine Net and Cascaded Multi-scale ArchitectureA Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance ApplicationsFCHD: A fast and accurate head detectorPedestrian Detection / People DetectionPedestrian Detection aided by Deep Learning Semantic TasksDeep Learning Strong Parts for Pedestrian DetectionTaking a Deeper Look at PedestriansConvolutional Channel FeaturesEnd-to-end people detection in crowded scenesLearning Complexity-Aware Cascades for Deep Pedestrian DetectionDeep convolutional neural networks for pedestrian detectionScale-aware Fast R-CNN for Pedestrian DetectionNew algorithm improves speed and accuracy of pedestrian detectionPushing the Limits of Deep CNNs for Pedestrian DetectionA Real-Time Deep Learning Pedestrian Detector for Robot NavigationA Real-Time Pedestrian Detector using Deep Learning for Human-Aware NavigationIs Faster R-CNN Doing Well for Pedestrian Detection?Unsupervised Deep Domain Adaptation for Pedestrian DetectionReduced Memory Region Based Deep Convolutional Neural Network DetectionFused DNN: A deep neural network fusion approach to fast and robust pedestrian detectionDetecting People in Artwork with CNNsMultispectral Deep Neural Networks for Pedestrian DetectionBox-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian DetectionDeep Multi-camera People DetectionExpecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial ImpostersWhat Can Help Pedestrian Detection?Illuminating Pedestrians via Simultaneous Detection & SegmentationRotational Rectification Network for Robust Pedestrian DetectionSTD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated VideosToo Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization PolicyRepulsion Loss: Detecting Pedestrians in a CrowdAggregated Channels Network for Real-Time Pedestrian DetectionIllumination-aware Faster R-CNN for Robust Multispectral Pedestrian DetectionExploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian DetectionPedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and BeyondPCN: Part and Context Information for Pedestrian Detection with CNNsSmall-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature AggregationOcclusion-aware R-CNN: Detecting Pedestrians in a CrowdMultispectral Pedestrian Detection via Simultaneous Detection and SegmentationPedestrian Detection with Autoregressive Network PhasesThe Cross-Modality Disparity Problem in Multispectral Pedestrian DetectionVehicle DetectionDAVE: A Unified Framework for Fast Vehicle Detection and AnnotationEvolving Boxes for fast Vehicle DetectionFine-Grained Car Detection for Visual Census EstimationSINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle DetectionLabel and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled DataDomain Randomization for Scene-Specific Car Detection and Pose EstimationShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded UAV ImageryTraffic-Sign DetectionTraffic-Sign Detection and Classification in the WildEvaluating State-of-the-art Object Detector on Challenging Traffic Light DataDetecting Small Signs from Large ImagesLocalized Traffic Sign Detection with Multi-scale Deconvolution NetworksDetecting Traffic Lights by Single Shot DetectionA Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light DetectionSkeleton DetectionObject Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side OutputsDeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural ImagesSRN: Side-output Residual Network for Object Symmetry Detection in the WildHi-Fi: Hierarchical Feature Integration for Skeleton DetectionFruit DetectionDeep Fruit Detection in OrchardsImage Segmentation for Fruit Detection and Yield Estimation in Apple OrchardsShadow DetectionFast Shadow Detection from a Single Image Using a Patched Convolutional Neural NetworkA+D-Net: Shadow Detection with Adversarial Shadow AttenuationStacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow RemovalDirection-aware Spatial Context Features for Shadow DetectionDirection-aware Spatial Context Features for Shadow Detection and RemovalOthers DetectionDeep Deformation Network for Object Landmark LocalizationFashion Landmark Detection in the WildDeep Learning for Fast and Accurate Fashion Item DetectionOSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)Selfie Detection by Synergy-Constraint Based Convolutional Neural NetworkAssociative Embedding:End-to-End Learning for Joint Detection and GroupingDeep Cuboid Detection: Beyond 2D Bounding BoxesAutomatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds DetectionDeep Learning Logo Detection with Data Expansion by Synthesising ContextScalable Deep Learning Logo DetectionPixel-wise Ear Detection with Convolutional Encoder-Decoder NetworksAutomatic Handgun Detection Alarm in Videos Using Deep LearningObjects as context for part detectionUsing Deep Networks for Drone DetectionCut, Paste and Learn: Surprisingly Easy Synthesis for Instance DetectionTarget Driven Instance DetectionDeepVoting: An Explainable Framework for Semantic Part Detection under Partial OcclusionVPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and RecognitionGrab, Pay and Eat: Semantic Food Detection for Smart RestaurantsReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance VideosDeep Learning Object Detection Methods for Ecological Camera Trap DataEL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane DetectionTowards End-to-End Lane Detection: an Instance Segmentation ApproachiCAN: Instance-Centric Attention Network for Human-Object Interaction DetectionDensely Supervised Grasp Detector (DSGD)Object ProposalDeepProposal: Hunting Objects by Cascading Deep Convolutional LayersScale-aware Pixel-wise Object Proposal NetworksAttend Refine Repeat: Active Box Proposal Generation via In-Out LocalizationLearning to Segment Object Proposals via Recursive Neural NetworksLearning Detection with Diverse ProposalsScaleNet: Guiding Object Proposal Generation in Supermarkets and BeyondImproving Small Object Proposals for Company Logo DetectionOpen Logo Detection ChallengeAttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small ObjectsLocalizationBeyond Bounding Boxes: Precise Localization of Objects in ImagesWeakly Supervised Object Localization with Multi-fold Multiple Instance LearningWeakly Supervised Object Localization Using Size EstimatesActive Object Localization with Deep Reinforcement LearningLocalizing objects using referring expressionsLocNet: Improving Localization Accuracy for Object DetectionLearning Deep Features for Discriminative LocalizationContextLocNet: Context-Aware Deep Network Models for Weakly Supervised LocalizationEnsemble of Part Detectors for Simultaneous Classification and LocalizationSTNet: Selective Tuning of Convolutional Networks for Object LocalizationSoft Proposal Networks for Weakly Supervised Object LocalizationFine-grained Discriminative Localization via Saliency-guided Faster R-CNNTutorials / TalksConvolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detectionTowards Good Practices for Recognition & DetectionWork in progress: Improving object detection and instance segmentation for small objectsObject Detection with Deep Learning: A ReviewProjectsDetectronTensorBox: a simple framework for training neural networks to detect objects in imagesObject detection in torch: Implementation of some object detection frameworks in torchUsing DIGITS to train an Object Detection networkFCN-MultiBox DetectorKittiBox: A car detection model implemented in Tensorflow.Deformable Convolutional Networks + MST + Soft-NMSHow to Build a Real-time Hand-Detector using Neural Networks (SSD) on TensorflowMetrics for object detectionMobileNetv2-SSDLiteLeaderboardDetection Results: VOC2012ToolsBeaverDam: Video annotation tool for deep learning training labelsBlogsConvolutional Neural Networks for Object DetectionIntroducing automatic object detection to visual search (Pinterest)Deep Learning for Object Detection with DIGITSAnalyzing The Papers Behind Facebook’s Computer Vision ApproachEasily Create High Quality Object Detectors with Deep LearningHow to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive ToolkitObject Detection in Satellite Imagery, a Low Overhead ApproachYou Only Look Twice?—?Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural NetworksFaster R-CNN Pedestrian and Car DetectionSmall U-Net for vehicle detectionRegion of interest pooling explainedSupercharge your Computer Vision models with the TensorFlow Object Detection APIUnderstanding SSD MultiBox?—?Real-Time Object Detection In Deep LearningOne-shot object detectionAn overview of object detection: one-stage methodsdeep learning object detection

Method backbone test size VOC2007 VOC2010 VOC2012 ILSVRC 2013 MSCOCO 2015 Speed
OverFeat 24.3%
R-CNN AlexNet 58.5% 53.7% 53.3% 31.4%
R-CNN VGG17 66.0%
SPP_net ZF-5 54.2% 31.84%
DeepID-Net 64.1% 50.3%
NoC 73.3% 68.8%
Fast-RCNN VGG16 70.0% 68.8% 68.4% 19.7%(@[0.5-0.95]), 35.9%(@0.5)
MR-CNN 78.2% 73.9%
Faster-RCNN VGG16 78.8% 75.9% 21.9%(@[0.5-0.95]), 42.7%(@0.5) 198ms
Faster-RCNN ResNet101 85.6% 83.8% 37.4%(@[0.5-0.95]), 59.0%(@0.5)
YOLO 63.4% 57.9% 45 fps
YOLO VGG-16 66.4% 21 fps
YOLOv2 448x448 78.6% 73.4% 21.6%(@[0.5-0.95]), 44.0%(@0.5) 40 fps
SSD VGG16 300x300 77.2% 75.8% 25.1%(@[0.5-0.95]), 43.1%(@0.5) 46 fps
SSD VGG16 512x512 79.8% 78.5% 28.8%(@[0.5-0.95]), 48.5%(@0.5) 19 fps
SSD ResNet101 300x300 28.0%(@[0.5-0.95]) 16 fps
SSD ResNet101 512x512 31.2%(@[0.5-0.95]) 8 fps
DSSD ResNet101 300x300 28.0%(@[0.5-0.95]) 8 fps
DSSD ResNet101 500x500 33.2%(@[0.5-0.95]) 6 fps
ION 79.2% 76.4%
CRAFT 75.7% 71.3% 48.5%
OHEM 78.9% 76.3% 25.5%(@[0.5-0.95]), 45.9%(@0.5)
R-FCN ResNet50 77.4% 0.12sec(K40), 0.09sec(TitianX)
R-FCN ResNet101 79.5% 0.17sec(K40), 0.12sec(TitianX)
R-FCN(ms train) ResNet101 83.6% 82.0% 31.5%(@[0.5-0.95]), 53.2%(@0.5)
PVANet 9.0 84.9% 84.2% 750ms(CPU), 46ms(TitianX)
RetinaNet ResNet101-FPN
Light-Head R-CNN Xception* 800/1200 31.5%@[0.5:0.95] 95 fps
Light-Head R-CNN Xception* 700/1100 30.7%@[0.5:0.95] 102 fps
STDN 80.9 (07+12)
RefineDet 83.8 (07+12) 83.5 (07++12) 41.8
SNIP 45.7
Relation-Network 32.5
Cascade R-CNN 42.8
MLKP 80.6 (07+12) 77.2 (07++12) 28.6
Fitness-NMS 41.8
RFBNet 82.2 (07+12)
CornerNet 42.1
PFPNet 84.1 (07+12) 83.7 (07++12) 39.4
Pelee 70.9 (07+12)
HKRM 78.8 (07+12) 37.8
M2Det 44.2
SIN 76.0 (07+12) 73.1 (07++12) 23.2

Papers



損失函數

[CVPR2019] Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

arxiv: https://arxiv.org/abs/1902.09630

Deep Neural Networks for Object Detection

paper: http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

arxiv: http://arxiv.org/abs/1312.6229
github: https://github.com/sermanet/OverFeat
code: http://cilvr.nyu.edu/doku.php?id=software:overfeat:start


R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

intro: R-CNN
arxiv: http://arxiv.org/abs/1311.2524
supp: http://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr-supp.pdf
slides: http://www.image-net.org/challenges/LSVRC/2013/slides/r-cnn-ilsvrc2013-workshop.pdf
slides: http://www.cs.berkeley.edu/~rbg/slides/rcnn-cvpr14-slides.pdf
github: https://github.com/rbgirshick/rcnn
notes: http://zhangliliang.com/2014/07/23/paper-note-rcnn/
caffe-pr(“Make R-CNN the Caffe detection example”): https://github.com/BVLC/caffe/pull/482


Fast R-CNN

Fast R-CNN

arxiv: http://arxiv.org/abs/1504.08083
slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf
github: https://github.com/rbgirshick/fast-rcnn
github(COCO-branch): https://github.com/rbgirshick/fast-rcnn/tree/coco
webcam demo: https://github.com/rbgirshick/fast-rcnn/pull/29
notes: http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/
notes: http://blog.csdn.net/linj_m/article/details/48930179
github(“Fast R-CNN in MXNet”): https://github.com/precedenceguo/mx-rcnn
github: https://github.com/mahyarnajibi/fast-rcnn-torch
github: https://github.com/apple2373/chainer-simple-fast-rnn
github: https://github.com/zplizzi/tensorflow-fast-rcnn

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03414
paper: http://abhinavsh.info/papers/pdfs/adversarial_object_detection.pdf
github(Caffe): https://github.com/xiaolonw/adversarial-frcnn

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

intro: NIPS 2015
arxiv: http://arxiv.org/abs/1506.01497
gitxiv: http://www.gitxiv.com/posts/8pfpcvefDYn2gSgXk/faster-r-cnn-towards-real-time-object-detection-with-region
slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
github(official, Matlab): https://github.com/ShaoqingRen/faster_rcnn
github: https://github.com/rbgirshick/py-faster-rcnn
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/faster_rcnn
github: https://github.com//jwyang/faster-rcnn.pytorch
github: https://github.com/mitmul/chainer-faster-rcnn
github: https://github.com/andreaskoepf/faster-rcnn.torch
github: https://github.com/ruotianluo/Faster-RCNN-Densecap-torch
github: https://github.com/smallcorgi/Faster-RCNN_TF
github: https://github.com/CharlesShang/TFFRCNN
github(C++ demo): https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
github: https://github.com/yhenon/keras-frcnn
github: https://github.com/Eniac-Xie/faster-rcnn-resnet
github(C++): https://github.com/D-X-Y/caffe-faster-rcnn/tree/dev

R-CNN minus R

intro: BMVC 2015
arxiv: http://arxiv.org/abs/1506.06981

Faster R-CNN in MXNet with distributed implementation and data parallelization

github: https://github.com/dmlc/mxnet/tree/master/example/rcnn

Contextual Priming and Feedback for Faster R-CNN

intro: ECCV 2016. Carnegie Mellon University
paper: http://abhinavsh.info/context_priming_feedback.pdf
poster: http://www.eccv2016.org/files/posters/P-1A-20.pdf

An Implementation of Faster RCNN with Study for Region Sampling

intro: Technical Report, 3 pages. CMU
arxiv: https://arxiv.org/abs/1702.02138
github: https://github.com/endernewton/tf-faster-rcnn

Interpretable R-CNN

intro: North Carolina State University & Alibaba
keywords: AND-OR Graph (AOG)
arxiv: https://arxiv.org/abs/1711.05226

[AAAI2019]Object Detection based on Region Decomposition and Assembly

intro: AAAI2019,區域分解組裝
arxiv: https://arxiv.org/abs/1901.08225
translate: https://zhuanlan.zhihu.com/p/58951221 論文翻譯


Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

intro: Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1711.07264
github(official, Tensorflow): https://github.com/zengarden/light_head_rcnn
github: https://github.com/terrychenism/Deformable-ConvNets/blob/master/rfcn/symbols/resnet_v1_101_rfcn_light.py

##Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

intro: CVPR 2018. UC San Diego
arxiv: https://arxiv.org/abs/1712.00726
github(Caffe, official): https://github.com/zhaoweicai/cascade-rcnn


MultiBox

Scalable Object Detection using Deep Neural Networks

intro: first MultiBox. Train a CNN to predict Region of Interest.
arxiv: http://arxiv.org/abs/1312.2249
github: https://github.com/google/multibox
blog: https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

Scalable, High-Quality Object Detection

intro: second MultiBox
arxiv: http://arxiv.org/abs/1412.1441
github: https://github.com/google/multibox


SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

intro: ECCV 2014 / TPAMI 2015
arxiv: http://arxiv.org/abs/1406.4729
github: https://github.com/ShaoqingRen/SPP_net
notes: http://zhangliliang.com/2014/09/13/paper-note-sppnet/

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

intro: PAMI 2016
intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
project page: http://www.ee.cuhk.edu.hk/?wlouyang/projects/imagenetDeepId/index.html
arxiv: http://arxiv.org/abs/1412.5661

Object Detectors Emerge in Deep Scene CNNs

intro: ICLR 2015
arxiv: http://arxiv.org/abs/1412.6856
paper: https://www.robots.ox.ac.uk/~vgg/rg/papers/zhou_iclr15.pdf
paper: https://people.csail.mit.edu/khosla/papers/iclr2015_zhou.pdf
slides: http://places.csail.mit.edu/slide_iclr2015.pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

intro: CVPR 2015
project(code+data): https://www.cs.toronto.edu/~yukun/segdeepm.html
arxiv: https://arxiv.org/abs/1502.04275
github: https://github.com/YknZhu/segDeepM

Object Detection Networks on Convolutional Feature Maps

intro: TPAMI 2015
keywords: NoC
arxiv: http://arxiv.org/abs/1504.06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

arxiv: http://arxiv.org/abs/1504.03293
slides: http://www.ytzhang.net/files/publications/2015-cvpr-det-slides.pdf
github: https://github.com/YutingZhang/fgs-obj

DeepBox: Learning Objectness with Convolutional Networks

keywords: DeepBox
arxiv: http://arxiv.org/abs/1505.02146
github: https://github.com/weichengkuo/DeepBox


MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

intro: ICCV 2015. MR-CNN
arxiv: http://arxiv.org/abs/1505.01749
github: https://github.com/gidariss/mrcnn-object-detection
notes: http://zhangliliang.com/2015/05/17/paper-note-ms-cnn/
notes: http://blog.cvmarcher.com/posts/2015/05/17/multi-region-semantic-segmentation-aware-cnn/


YOLO

You Only Look Once: Unified, Real-Time Object Detection

arxiv: http://arxiv.org/abs/1506.02640
code: http://pjreddie.com/darknet/yolo/
github: https://github.com/pjreddie/darknet
blog: https://pjreddie.com/publications/yolo/
slides: https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p
reddit: https://www.reddit.com/r/MachineLearning/comments/3a3m0o/realtime_object_detection_with_yolo/
github: https://github.com/gliese581gg/YOLO_tensorflow
github: https://github.com/xingwangsfu/caffe-yolo
github: https://github.com/frankzhangrui/Darknet-Yolo
github: https://github.com/BriSkyHekun/py-darknet-yolo
github: https://github.com/tommy-qichang/yolo.torch
github: https://github.com/frischzenger/yolo-windows
github: https://github.com/AlexeyAB/yolo-windows
github: https://github.com/nilboy/tensorflow-yolo

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

blog: https://thtrieu.github.io/notes/yolo-tensorflow-graph-buffer-cpp
github: https://github.com/thtrieu/darkflow

Start Training YOLO with Our Own Data

intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
blog: http://guanghan.info/blog/en/my-works/train-yolo/
github: https://github.com/Guanghan/darknet

YOLO: Core ML versus MPSNNGraph

intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API.
blog: http://machinethink.net/blog/yolo-coreml-versus-mps-graph/
github: https://github.com/hollance/YOLO-CoreML-MPSNNGraph

TensorFlow YOLO object detection on Android

intro: Real-time object detection on Android using the YOLO network with TensorFlow
github: https://github.com/natanielruiz/android-yolo

Computer Vision in iOS – Object Detection

blog: https://sriraghu.com/2017/07/12/computer-vision-in-ios-object-detection/
github:https://github.com/r4ghu/iOS-CoreML-Yolo


YOLOv2

YOLO9000: Better, Faster, Stronger

arxiv: https://arxiv.org/abs/1612.08242
code: http://pjreddie.com/yolo9000/
github(Chainer): https://github.com/leetenki/YOLOv2
github(Keras): https://github.com/allanzelener/YAD2K
github(PyTorch): https://github.com/longcw/yolo2-pytorch
github(Tensorflow): https://github.com/hizhangp/yolo_tensorflow
github(Windows): https://github.com/AlexeyAB/darknet
github: https://github.com/choasUp/caffe-yolo9000
github: https://github.com/philipperemy/yolo-9000

darknet_scripts

intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors?
github: https://github.com/Jumabek/darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

github: https://github.com/AlexeyAB/Yolo_mark

LightNet: Bringing pjreddie’s DarkNet out of the shadows

github: https://github.com//explosion/lightnet

YOLO v2 Bounding Box Tool

intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires.
github: https://github.com/Cartucho/yolo-boundingbox-labeler-GUI


YOLOv3

YOLOv3: An Incremental Improvement

project page: https://pjreddie.com/darknet/yolo/
arxiv: https://arxiv.org/abs/1804.02767
github: https://github.com/DeNA/PyTorch_YOLOv3
github: https://github.com/eriklindernoren/PyTorch-YOLOv3

YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers

arxiv:https://arxiv.org/abs/1811.05588


AttentionNet: Aggregating Weak Directions for Accurate Object Detection

intro: ICCV 2015
intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
arxiv: http://arxiv.org/abs/1506.07704
slides: https://www.robots.ox.ac.uk/~vgg/rg/slides/AttentionNet.pdf
slides: http://image-net.org/challenges/talks/lunit-kaist-slide.pdf


DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

arxiv: http://arxiv.org/abs/1509.04874
demo: http://pan.baidu.com/s/1mgoWWsS
KITTI result: http://www.cvlibs.net/datasets/kitti/eval_object.php


SSD

SSD: Single Shot MultiBox Detector

intro: ECCV 2016 Oral
arxiv: http://arxiv.org/abs/1512.02325
paper: http://www.cs.unc.edu/~wliu/papers/ssd.pdf
slides: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf
github(Official): https://github.com/weiliu89/caffe/tree/ssd
video: http://weibo.com/p/2304447a2326da963254c963c97fb05dd3a973
github: https://github.com/zhreshold/mxnet-ssd
github: https://github.com/zhreshold/mxnet-ssd.cpp
github: https://github.com/rykov8/ssd_keras
github: https://github.com/balancap/SSD-Tensorflow
github: https://github.com/amdegroot/ssd.pytorch
github(Caffe): https://github.com/chuanqi305/MobileNet-SSD
What’s the diffience in performance between this new code you pushed and the previous code? #327
https://github.com/weiliu89/caffe/issues/327


DSSD

DSSD : Deconvolutional Single Shot Detector

intro: UNC Chapel Hill & Amazon Inc
arxiv: https://arxiv.org/abs/1701.06659
github: https://github.com/chengyangfu/caffe/tree/dssd
github: https://github.com/MTCloudVision/mxnet-dssd
demo: http://120.52.72.53/www.cs.unc.edu/c3pr90ntc0td/~cyfu/dssd_lalaland.mp4

Enhancement of SSD by concatenating feature maps for object detection

intro: rainbow SSD (R-SSD)
arxiv: https://arxiv.org/abs/1705.09587

Context-aware Single-Shot Detector

keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs)
arxiv: https://arxiv.org/abs/1707.08682

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054


FSSD

FSSD: Feature Fusion Single Shot Multibox Detector

https://arxiv.org/abs/1712.00960

Weaving Multi-scale Context for Single Shot Detector

intro: WeaveNet
keywords: fuse multi-scale information
arxiv: https://arxiv.org/abs/1712.03149


ESSD

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

arxiv: https://arxiv.org/abs/1801.05918

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

arxiv: https://arxiv.org/abs/1802.06488

MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects

intro: Zhengzhou University
arxiv: https://arxiv.org/abs/1805.07009


Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
arxiv: http://arxiv.org/abs/1512.04143
slides: http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf
coco-leaderboard: http://mscoco.org/dataset/

Adaptive Object Detection Using Adjacency and Zoom Prediction

intro: CVPR 2016. AZ-Net
arxiv: http://arxiv.org/abs/1512.07711
github: https://github.com/luyongxi/az-net
youtube: https://www.youtube.com/watch?v=YmFtuNwxaNM

G-CNN: an Iterative Grid Based Object Detector

arxiv: http://arxiv.org/abs/1512.07729


Factors in Finetuning Deep Model for object detection

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
project page: http://www.ee.cuhk.edu.hk/~wlouyang/projects/ImageNetFactors/CVPR16.html
arxiv: http://arxiv.org/abs/1601.05150

We don’t need no bounding-boxes: Training object class detectors using only human verification

arxiv: http://arxiv.org/abs/1602.08405

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

arxiv: http://arxiv.org/abs/1604.00600

A MultiPath Network for Object Detection

intro: BMVC 2016. Facebook AI Research (FAIR)
arxiv: http://arxiv.org/abs/1604.02135
github: https://github.com/facebookresearch/multipathnet


CRAFT

CRAFT Objects from Images

intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
project page: http://byangderek.github.io/projects/craft.html
arxiv: https://arxiv.org/abs/1604.03239
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Yang_CRAFT_Objects_From_CVPR_2016_paper.pdf
github: https://github.com/byangderek/CRAFT


OHEM

Training Region-based Object Detectors with Online Hard Example Mining

intro: CVPR 2016 Oral. Online hard example mining (OHEM)
arxiv: http://arxiv.org/abs/1604.03540
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shrivastava_Training_Region-Based_Object_CVPR_2016_paper.pdf
github(Official): https://github.com/abhi2610/ohem
author page: http://abhinav-shrivastava.info/

S-OHEM: Stratified Online Hard Example Mining for Object Detection

arxiv: https://arxiv.org/abs/1705.02233

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

intro: CVPR 2016
keywords: scale-dependent pooling (SDP), cascaded rejection classifiers (CRC)
paper: http://www-personal.umich.edu/~wgchoi/SDP-CRC_camready.pdf


R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

arxiv: http://arxiv.org/abs/1605.06409
github: https://github.com/daijifeng001/R-FCN
github(MXNet): https://github.com/msracver/Deformable-ConvNets/tree/master/rfcn
github: https://github.com/Orpine/py-R-FCN
github: https://github.com/PureDiors/pytorch_RFCN
github: https://github.com/bharatsingh430/py-R-FCN-multiGPU
github: https://github.com/xdever/RFCN-tensorflow

R-FCN-3000 at 30fps: Decoupling Detection and Classification

arxiv: https://arxiv.org/abs/1712.01802

Recycle deep features for better object detection

arxiv: http://arxiv.org/abs/1607.05066


MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

intro: ECCV 2016
intro: 640×480: 15 fps, 960×720: 8 fps
arxiv: http://arxiv.org/abs/1607.07155
github: https://github.com/zhaoweicai/mscnn
poster: http://www.eccv2016.org/files/posters/P-2B-38.pdf

Multi-stage Object Detection with Group Recursive Learning

intro: VOC2007: 78.6%, VOC2012: 74.9%
arxiv: http://arxiv.org/abs/1608.05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

intro: WACV 2017. SubCNN
arxiv: http://arxiv.org/abs/1604.04693
github: https://github.com/tanshen/SubCNN


PVANET

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation of arXiv:1608.08021
arxiv: https://arxiv.org/abs/1611.08588
github: https://github.com/sanghoon/pva-faster-rcnn
leaderboard(PVANet 9.0): http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4


GBD-Net

Gated Bi-directional CNN for Object Detection

intro: The Chinese University of Hong Kong & Sensetime Group Limited
paper: http://link.springer.com/chapter/10.1007/978-3-319-46478-7_22
mirror: https://pan.baidu.com/s/1dFohO7v

Crafting GBD-Net for Object Detection

intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
intro: gated bi-directional CNN (GBD-Net)
arxiv: https://arxiv.org/abs/1610.02579
github: https://github.com/craftGBD/craftGBD

StuffNet: Using ‘Stuff’ to Improve Object Detection

arxiv: https://arxiv.org/abs/1610.05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

arxiv: https://arxiv.org/abs/1610.09609

Hierarchical Object Detection with Deep Reinforcement Learning

intro: Deep Reinforcement Learning Workshop (NIPS 2016)
project page: https://imatge-upc.github.io/detection-2016-nipsws/
arxiv: https://arxiv.org/abs/1611.03718
slides: http://www.slideshare.net/xavigiro/hierarchical-object-detection-with-deep-reinforcement-learning
github: https://github.com/imatge-upc/detection-2016-nipsws
blog: http://jorditorres.org/nips/

Learning to detect and localize many objects from few examples

arxiv: https://arxiv.org/abs/1611.05664

Speed/accuracy trade-offs for modern convolutional object detectors

intro: CVPR 2017. Google Research
arxiv: https://arxiv.org/abs/1611.10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

arxiv: https://arxiv.org/abs/1612.01051
github: https://github.com/BichenWuUCB/squeezeDet
github: https://github.com/fregu856/2D_detection


Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

intro: Facebook AI Research
arxiv: https://arxiv.org/abs/1612.03144

Action-Driven Object Detection with Top-Down Visual Attentions

arxiv: https://arxiv.org/abs/1612.06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

intro: CMU & UC Berkeley & Google Research
arxiv: https://arxiv.org/abs/1612.06851

Wide-Residual-Inception Networks for Real-time Object Detection

intro: Inha University
arxiv: https://arxiv.org/abs/1702.01243

Attentional Network for Visual Object Detection

intro: University of Maryland & Mitsubishi Electric Research Laboratories
arxiv: https://arxiv.org/abs/1702.01478

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

keykwords: CC-Net
intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
arxiv: https://arxiv.org/abs/1702.07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

intro: ICCV 2017 (poster)
arxiv: https://arxiv.org/abs/1703.10295

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1704.03944

Spatial Memory for Context Reasoning in Object Detection

arxiv: https://arxiv.org/abs/1704.04224

Accurate Single Stage Detector Using Recurrent Rolling Convolution

intro: CVPR 2017. SenseTime
keywords: Recurrent Rolling Convolution (RRC)
arxiv: https://arxiv.org/abs/1704.05776
github: https://github.com/xiaohaoChen/rrc_detection

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

arxiv: https://arxiv.org/abs/1704.05775

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc
arxiv: https://arxiv.org/abs/1705.05922

Point Linking Network for Object Detection

intro: Point Linking Network (PLN)
arxiv: https://arxiv.org/abs/1706.03646

Perceptual Generative Adversarial Networks for Small Object Detection

arxiv: https://arxiv.org/abs/1706.05274

Few-shot Object Detection

arxiv: https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

arxiv: https://arxiv.org/abs/1706.09180

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

arxiv: https://arxiv.org/abs/1706.10217

Towards lightweight convolutional neural networks for object detection

arxiv: https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1707.01691
github: https://github.com/taokong/RON

Mimicking Very Efficient Network for Object Detection

intro: CVPR 2017. SenseTime & Beihang University
paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Mimicking_Very_Efficient_CVPR_2017_paper.pdf

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

Deformable Part-based Fully Convolutional Network for Object Detection

intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC
arxiv: https://arxiv.org/abs/1707.06175

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1707.06399

Recurrent Scale Approximation for Object Detection in CNN

intro: ICCV 2017
keywords: Recurrent Scale Approximation (RSA)
arxiv: https://arxiv.org/abs/1707.09531
github: https://github.com/sciencefans/RSA-for-object-detection


DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China
arxiv: https://arxiv.org/abs/1708.01241
github: https://github.com/szq0214/DSOD

Object Detection from Scratch with Deep Supervision

arxiv: https://arxiv.org/abs/1809.09294

##RetinaNet

Focal Loss for Dense Object Detection

intro: ICCV 2017 Best student paper award. Facebook AI Research
keywords: RetinaNet
arxiv: https://arxiv.org/abs/1708.02002

Focal Loss Dense Detector for Vehicle Surveillance

arxiv: https://arxiv.org/abs/1803.01114

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.02863

Incremental Learning of Object Detectors without Catastrophic Forgetting

intro: ICCV 2017. Inria
arxiv: https://arxiv.org/abs/1708.06977

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

arxiv: https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

arxiv: https://arxiv.org/abs/1709.05788

Dynamic Zoom-in Network for Fast Object Detection in Large Images

https://arxiv.org/abs/1711.05187

Zero-Annotation Object Detection with Web Knowledge Transfer

intro: NTU, Singapore & Amazon
keywords: multi-instance multi-label domain adaption learning framework
arxiv: https://arxiv.org/abs/1711.05954


MegDet

MegDet: A Large Mini-Batch Object Detector

intro: Peking University & Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1711.07240

Single-Shot Refinement Neural Network for Object Detection

arxiv: https://arxiv.org/abs/1711.06897
github: https://github.com/sfzhang15/RefineDet
github: https://github.com/MTCloudVision/RefineDet-Mxnet

Receptive Field Block Net for Accurate and Fast Object Detection

intro: RFBNet
arxiv: https://arxiv.org/abs/1711.07767
github: https://github.com//ruinmessi/RFBNet

An Analysis of Scale Invariance in Object Detection - SNIP

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1711.08189
github: https://github.com/bharatsingh430/snip

Feature Selective Networks for Object Detection

arxiv: https://arxiv.org/abs/1711.08879

Learning a Rotation Invariant Detector with Rotatable Bounding Box

arxiv: https://arxiv.org/abs/1711.09405
github(official, Caffe): https://github.com/liulei01/DRBox

Scalable Object Detection for Stylized Objects

intro: Microsoft AI & Research Munich
arxiv: https://arxiv.org/abs/1711.09822

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

arxiv: https://arxiv.org/abs/1712.00886
github: https://github.com/szq0214/GRP-DSOD

Deep Regionlets for Object Detection

keywords: region selection network, gating network
arxiv: https://arxiv.org/abs/1712.02408

Training and Testing Object Detectors with Virtual Images

intro: IEEE/CAA Journal of Automatica Sinica
arxiv: https://arxiv.org/abs/1712.08470

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

intro: Tsinghua University & JD Group
arxiv: https://arxiv.org/abs/1801.01051

Localization-Aware Active Learning for Object Detection

arxiv: https://arxiv.org/abs/1801.05124

Object Detection with Mask-based Feature Encoding

arxiv: https://arxiv.org/abs/1802.03934

LSTD: A Low-Shot Transfer Detector for Object Detection

intro: AAAI 2018
arxiv: https://arxiv.org/abs/1803.01529

Domain Adaptive Faster R-CNN for Object Detection in the Wild

intro: CVPR 2018. ETH Zurich & ESAT/PSI
arxiv: https://arxiv.org/abs/1803.03243
github(official. Caffe): https://github.com/yuhuayc/da-faster-rcnn

Pseudo Mask Augmented Object Detection

arxiv: https://arxiv.org/abs/1803.05858

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

intro: ECCV 2018
keywords: DCR V1
arxiv: https://arxiv.org/abs/1803.06799
github(official, MXNet): https://github.com/bowenc0221/Decoupled-Classification-Refinement

Decoupled Classification Refinement: Hard False Positive Suppression for Object Detection

keywords: DCR V2
arxiv: https://arxiv.org/abs/1810.04002
github(official, MXNet): https://github.com/bowenc0221/Decoupled-Classification-Refinement

Learning Region Features for Object Detection

intro: Peking University & MSRA
arxiv: https://arxiv.org/abs/1803.07066

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

intro: Singapore Management University & Zhejiang University
arxiv: https://arxiv.org/abs/1803.08208

Object Detection for Comics using Manga109 Annotations

intro: University of Tokyo & National Institute of Informatics, Japan
arxiv: https://arxiv.org/abs/1803.08670

Task-Driven Super Resolution: Object Detection in Low-resolution Images

arxiv: https://arxiv.org/abs/1803.11316

Transferring Common-Sense Knowledge for Object Detection

arxiv: https://arxiv.org/abs/1804.01077

Multi-scale Location-aware Kernel Representation for Object Detection

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1804.00428
github: https://github.com/Hwang64/MLKP

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

intro: National University of Defense Technology
arxiv: https://arxiv.org/abs/1804.04606

DetNet: A Backbone network for Object Detection

intro: Tsinghua University & Megvii Inc
arxiv: https://arxiv.org/abs/1804.06215

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

arxiv: https://arxiv.org/abs/1804.05810

AdvDetPatch: Attacking Object Detectors with Adversarial Patches

arxiv: https://arxiv.org/abs/1806.02299

Attacking Object Detectors via Imperceptible Patches on Background

https://arxiv.org/abs/1809.05966

Physical Adversarial Examples for Object Detectors

intro: WOOT 2018
arxiv: https://arxiv.org/abs/1807.07769

Quantization Mimic: Towards Very Tiny CNN for Object Detection

arxiv: https://arxiv.org/abs/1805.02152

Object detection at 200 Frames Per Second

intro: United Technologies Research Center-Ireland
arxiv: https://arxiv.org/abs/1805.06361

Object Detection using Domain Randomization and Generative Adversarial Refinement of Synthetic Images

intro: CVPR 2018 Deep Vision Workshop
arxiv: https://arxiv.org/abs/1805.11778

SNIPER: Efficient Multi-Scale Training

intro: University of Maryland
keywords: SNIPER (Scale Normalization for Image Pyramid with Efficient Resampling)
arxiv: https://arxiv.org/abs/1805.09300
github: https://github.com/mahyarnajibi/SNIPER

Soft Sampling for Robust Object Detection

arxiv: https://arxiv.org/abs/1806.06986

MetaAnchor: Learning to Detect Objects with Customized Anchors

intro: Megvii Inc (Face++) & Fudan University
arxiv: https://arxiv.org/abs/1807.00980

Localization Recall Precision (LRP): A New Performance Metric for Object Detection

intro: ECCV 2018. Middle East Technical University
arxiv: https://arxiv.org/abs/1807.01696
github: https://github.com/cancam/LRP

Auto-Context R-CNN

intro: Rejected by ECCV18
arxiv: https://arxiv.org/abs/1807.02842

Pooling Pyramid Network for Object Detection

intro: Google AI Perception
arxiv: https://arxiv.org/abs/1807.03284

Modeling Visual Context is Key to Augmenting Object Detection Datasets

intro: ECCV 2018
arxiv: https://arxiv.org/abs/1807.07428

Dual Refinement Network for Single-Shot Object Detection

arxiv: https://arxiv.org/abs/1807.08638

Acquisition of Localization Confidence for Accurate Object Detection

intro: ECCV 2018
arxiv: https://arxiv.org/abs/1807.11590
gihtub: https://github.com/vacancy/PreciseRoIPooling

CornerNet: Detecting Objects as Paired Keypoints

intro: ECCV 2018
keywords: IoU-Net, PreciseRoIPooling
arxiv: https://arxiv.org/abs/1808.01244
github: https://github.com/umich-vl/CornerNet

Unsupervised Hard Example Mining from Videos for Improved Object Detection

intro: ECCV 2018
arxiv: https://arxiv.org/abs/1808.04285

SAN: Learning Relationship between Convolutional Features for Multi-Scale Object Detection

arxiv: https://arxiv.org/abs/1808.04974

A Survey of Modern Object Detection Literature using Deep Learning

arxiv: https://arxiv.org/abs/1808.07256

Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

intro: BMVC 2018
arxiv: https://arxiv.org/abs/1807.11013
github: https://github.com/lyxok1/Tiny-DSOD

Deep Feature Pyramid Reconfiguration for Object Detection

intro: ECCV 2018
arxiv: https://arxiv.org/abs/1808.07993

MDCN: Multi-Scale, Deep Inception Convolutional Neural Networks for Efficient Object Detection

intro: ICPR 2018
arxiv: https://arxiv.org/abs/1809.01791

Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks

https://arxiv.org/abs/1809.03193

Deep Learning for Generic Object Detection: A Survey

https://arxiv.org/abs/1809.02165

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples

intro: ICLR 2018
arxiv: https://github.com/alinlab/Confident_classifier

ScratchDet:Exploring to Train Single-Shot Object Detectors from Scratch

arxiv: https://arxiv.org/abs/1810.08425
github: https://github.com/KimSoybean/ScratchDet

Fast and accurate object detection in high resolution 4K and 8K video using GPUs

intro: Best Paper Finalist at IEEE High Performance Extreme Computing Conference (HPEC) 2018
intro: Carnegie Mellon University
arxiv: https://arxiv.org/abs/1810.10551

Hybrid Knowledge Routed Modules for Large-scale Object Detection

intro: NIPS 2018
arxiv: https://arxiv.org/abs/1810.12681
github(official, PyTorch): https://github.com/chanyn/HKRM

Gradient Harmonized Single-stage Detector

intro: AAAI 2019
arxiv: https://arxiv.org/abs/1811.05181

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network

intro: AAAI 2019
arxiv: https://arxiv.org/abs/1811.04533
github: https://github.com/qijiezhao/M2Det

BAN: Focusing on Boundary Context for Object Detection

arxiv:https://arxiv.org/abs/1811.05243

Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector

intro: WACV 2019
arxiv: https://arxiv.org/abs/1811.08342

R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy

arxiv: https://arxiv.org/abs/1811.07126
github: https://github.com/DetectionTeamUCAS/R2CNN-Plus-Plus_Tensorflow

DeRPN: Taking a further step toward more general object detection

intro: AAAI 2019
intro: South China University of Technology
arxiv: https://arxiv.org/abs/1811.06700
github: https://github.com/HCIILAB/DeRPN

Fast Efficient Object Detection Using Selective Attention

arxiv:https://arxiv.org/abs/1811.07502

Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects

arxiv:https://arxiv.org/abs/1811.10862

Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects

arxiv:https://arxiv.org/abs/1811.12152

Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection

arxiv:https://arxiv.org/abs/1811.11318

Grid R-CNN

intro: SenseTime
arxiv: https://arxiv.org/abs/1811.12030

Transferable Adversarial Attacks for Image and Video Object Detection

-arxiv:https://arxiv.org/abs/1811.12641

Anchor Box Optimization for Object Detection

intro: University of Illinois at Urbana-Champaign & Microsoft Research
arxiv: https://arxiv.org/abs/1812.00469

AutoFocus: Efficient Multi-Scale Inference

intro: University of Maryland
arxiv: https://arxiv.org/abs/1812.01600

###Few-shot Object Detection via Feature Reweighting

arxiv:https://arxiv.org/abs/1812.01866

Practical Adversarial Attack Against Object Detector

arxiv:https://arxiv.org/abs/1812.10217

Learning Efficient Detector with Semi-supervised Adaptive Distillation

intro: SenseTime Research
arxiv: https://arxiv.org/abs/1901.00366
github: https://github.com/Tangshitao/Semi-supervised-Adaptive-Distillation

Scale-Aware Trident Networks for Object Detection

intro: University of Chinese Academy of Sciences & TuSimple
arxiv: https://arxiv.org/abs/1901.01892
github: https://github.com/TuSimple/simpledet

Region Proposal by Guided Anchoring

intro: CUHK - SenseTime Joint Lab & Amazon Rekognition & Nanyang Technological University
arxiv: https://arxiv.org/abs/1901.03278

Consistent Optimization for Single-Shot Object Detection

arxiv: https://arxiv.org/abs/1901.06563
blog: https://zhuanlan.zhihu.com/p/55416312

Bottom-up Object Detection by Grouping Extreme and Center Points

keywords: ExtremeNet
arxiv: https://arxiv.org/abs/1901.08043
github: https://github.com/xingyizhou/ExtremeNet

A Single-shot Object Detector with Feature Aggragation and Enhancement

arxiv: https://arxiv.org/abs/1902.02923

Bag of Freebies for Training Object Detection Neural Networks

intro: Amazon Web Services
arxiv: https://arxiv.org/abs/1902.04103


Non-Maximum Suppression (NMS)

End-to-End Integration of a Convolutional Network, Deformable Parts Model and Non-Maximum Suppression

intro: CVPR 2015
arxiv: http://arxiv.org/abs/1411.5309
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wan_End-to-End_Integration_of_2015_CVPR_paper.pdf

A convnet for non-maximum suppression

arxiv: http://arxiv.org/abs/1511.06437
Improving Object Detection With One Line of Code

Soft-NMS – Improving Object Detection With One Line of Code

intro: ICCV 2017. University of Maryland
keywords: Soft-NMS
arxiv: https://arxiv.org/abs/1704.04503
github: https://github.com/bharatsingh430/soft-nms

Learning non-maximum suppression

intro: CVPR 2017
project page: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/object-recognition-and-scene-understanding/learning-nms/
arxiv: https://arxiv.org/abs/1705.02950
github: https://github.com/hosang/gossipnet

Relation Networks for Object Detection

intro: CVPR 2018 oral
arxiv: https://arxiv.org/abs/1711.11575
github(official, MXNet): https://github.com/msracver/Relation-Networks-for-Object-Detection

Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes

keywords: Pairwise-NMS
arxiv: https://arxiv.org/abs/1901.03796

Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples

arxiv: https://arxiv.org/abs/1902.02067


Adversarial Examples

Adversarial Examples that Fool Detectors

intro: University of Illinois
arxiv: https://arxiv.org/abs/1712.02494

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods

project page: http://nicholas.carlini.com/code/nn_breaking_detection/
arxiv: https://arxiv.org/abs/1705.07263
github: https://github.com/carlini/nn_breaking_detection


Weakly Supervised Object Detection

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

intro: CVPR 2016
arxiv: http://arxiv.org/abs/1604.05766

Weakly supervised object detection using pseudo-strong labels

arxiv: http://arxiv.org/abs/1607.04731

Saliency Guided End-to-End Learning for Weakly Supervised Object Detection

intro: IJCAI 2017
arxiv: https://arxiv.org/abs/1706.06768

Visual and Semantic Knowledge Transfer for Large Scale Semi-supervised Object Detection

intro: TPAMI 2017. National Institutes of Health (NIH) Clinical Center
arxiv: https://arxiv.org/abs/1801.03145


Video Object Detection

Learning Object Class Detectors from Weakly Annotated Video

intro: CVPR 2012
paper: https://www.vision.ee.ethz.ch/publications/papers/proceedings/eth_biwi_00905.pdf

Analysing domain shift factors between videos and images for object detection

arxiv: https://arxiv.org/abs/1501.01186

Video Object Recognition

slides: http://vision.princeton.edu/courses/COS598/2015sp/slides/VideoRecog/Video Object Recognition.pptx

Deep Learning for Saliency Prediction in Natural Video

intro: Submitted on 12 Jan 2016
keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
paper: https://hal.archives-ouvertes.fr/hal-01251614/document

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
arxiv: http://arxiv.org/abs/1604.02532
github: https://github.com/myfavouritekk/T-CNN

Object Detection from Video Tubelets with Convolutional Neural Networks

intro: CVPR 2016 Spotlight paper
arxiv: https://arxiv.org/abs/1604.04053
paper: http://www.ee.cuhk.edu.hk/~wlouyang/Papers/KangVideoDet_CVPR16.pdf
gihtub: https://github.com/myfavouritekk/vdetlib

Object Detection in Videos with Tubelets and Multi-context Cues

intro: SenseTime Group
slides: http://www.ee.cuhk.edu.hk/~xgwang/CUvideo.pdf
slides: http://image-net.org/challenges/talks/Object Detection in Videos with Tubelets and Multi-context Cues - Final.pdf

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

intro: BMVC 2016
keywords: pseudo-labeler
arxiv: http://arxiv.org/abs/1607.04648
paper: http://vision.cornell.edu/se3/wp-content/uploads/2016/07/video_object_detection_BMVC.pdf

CNN Based Object Detection in Large Video Images

intro: WangTao @ 愛奇藝
keywords: object retrieval, object detection, scene classification
slides: http://on-demand.gputechconf.com/gtc/2016/presentation/s6362-wang-tao-cnn-based-object-detection-large-video-images.pdf

Object Detection in Videos with Tubelet Proposal Networks

arxiv: https://arxiv.org/abs/1702.06355

Flow-Guided Feature Aggregation for Video Object Detection

intro: MSRA
arxiv: https://arxiv.org/abs/1703.10025

Video Object Detection using Faster R-CNN

blog: http://andrewliao11.github.io/object_detection/faster_rcnn/
github: https://github.com/andrewliao11/py-faster-rcnn-imagenet

Improving Context Modeling for Video Object Detection and Tracking

http://image-net.org/challenges/talks_2017/ilsvrc2017_short(poster).pdf

Temporal Dynamic Graph LSTM for Action-driven Video Object Detection

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.00666

Mobile Video Object Detection with Temporally-Aware Feature Maps

arxiv: https://arxiv.org/abs/1711.06368

Towards High Performance Video Object Detection

arxiv: https://arxiv.org/abs/1711.11577

Impression Network for Video Object Detection

arxiv: https://arxiv.org/abs/1712.05896

Spatial-Temporal Memory Networks for Video Object Detection

arxiv: https://arxiv.org/abs/1712.06317

3D-DETNet: a Single Stage Video-Based Vehicle Detector

arxiv: https://arxiv.org/abs/1801.01769

Object Detection in Videos by Short and Long Range Object Linking

arxiv: https://arxiv.org/abs/1801.09823

Object Detection in Video with Spatiotemporal Sampling Networks

intro: University of Pennsylvania, 2Dartmouth College
arxiv: https://arxiv.org/abs/1803.05549

Towards High Performance Video Object Detection for Mobiles

intro: Microsoft Research Asia
arxiv: https://arxiv.org/abs/1804.05830

Optimizing Video Object Detection via a Scale-Time Lattice

intro: CVPR 2018
project page: http://mmlab.ie.cuhk.edu.hk/projects/ST-Lattice/
arxiv: https://arxiv.org/abs/1804.05472
github: https://github.com/hellock/scale-time-lattice

Pack and Detect: Fast Object Detection in Videos Using Region-of-Interest Packing

https://arxiv.org/abs/1809.01701

Fast Object Detection in Compressed Video

arxiv:https://arxiv.org/abs/1811.11057

Tube-CNN: Modeling temporal evolution of appearance for object detection in video

intro: INRIA/ENS
arxiv: https://arxiv.org/abs/1812.02619

AdaScale: Towards Real-time Video Object Detection Using Adaptive Scaling

intro: SysML 2019 oral
arxiv: https://arxiv.org/abs/1902.02910


Object Detection on Mobile Devices

Pelee: A Real-Time Object Detection System on Mobile Devices

intro: ICLR 2018 workshop track
intro: based on the SSD
arxiv: https://arxiv.org/abs/1804.06882
github: https://github.com/Robert-JunWang/Pelee


Object Detection in 3D

Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

arxiv: https://arxiv.org/abs/1609.06666

Complex-YOLO: Real-time 3D Object Detection on Point Clouds

intro: Valeo Schalter und Sensoren GmbH & Ilmenau University of Technology
arxiv: https://arxiv.org/abs/1803.06199

Focal Loss in 3D Object Detection

arxiv: https://arxiv.org/abs/1809.06065
github: https://github.com/pyun-ram/FL3D

3D Object Detection Using Scale Invariant and Feature Reweighting Networks

intro: AAAI 2019
arxiv: https://arxiv.org/abs/1901.02237

3D Backbone Network for 3D Object Detection

arxiv: https://arxiv.org/abs/1901.08373


Object Detection on RGB-D

Learning Rich Features from RGB-D Images for Object Detection and Segmentation

arxiv: http://arxiv.org/abs/1407.5736

Differential Geometry Boosts Convolutional Neural Networks for Object Detection

intro: CVPR 2016
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w23/html/Wang_Differential_Geometry_Boosts_CVPR_2016_paper.html

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

arxiv: https://arxiv.org/abs/1703.03347


Zero-Shot Object Detection

Zero-Shot Detection

intro: Australian National University
keywords: YOLO
arxiv: https://arxiv.org/abs/1803.07113

Zero-Shot Object Detection

arxiv: https://arxiv.org/abs/1804.04340

Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts

intro: Australian National University
arxiv: https://arxiv.org/abs/1803.06049

Zero-Shot Object Detection by Hybrid Region Embedding

intro: Middle East Technical University & Hacettepe University
arxiv: https://arxiv.org/abs/1805.06157


Salient Object Detection

This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

page: http://i.cs.hku.hk/~yzyu/vision.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

paper: http://coxlab.org/pdfs/cvpr2014_vig_saliency.pdf

Predicting Eye Fixations using Convolutional Neural Networks

paper: http://www.escience.cn/system/file?fileId=72648

Saliency Detection by Multi-Context Deep Learning

paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zhao_Saliency_Detection_by_2015_CVPR_paper.pdf

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

arxiv: http://arxiv.org/abs/1510.05484

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

paper: www.shengfenghe.com/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

Shallow and Deep Convolutional Networks for Saliency Prediction

intro: CVPR 2016
arxiv: http://arxiv.org/abs/1603.00845
github: https://github.com/imatge-upc/saliency-2016-cvpr

Recurrent Attentional Networks for Saliency Detection

intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
arxiv: http://arxiv.org/abs/1604.03227

Two-Stream Convolutional Networks for Dynamic Saliency Prediction

arxiv: http://arxiv.org/abs/1607.04730


Unconstrained Salient Object Detection

Unconstrained Salient Object Detection via Proposal Subset Optimization

intro: CVPR 2016
project page: http://cs-people.bu.edu/jmzhang/sod.html
paper: http://cs-people.bu.edu/jmzhang/SOD/CVPR16SOD_camera_ready.pdf
github: https://github.com/jimmie33/SOD
caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf

Salient Object Subitizing

intro: CVPR 2015
intro: predicting the existence and the number of salient objects in an image using holistic cues
project page: http://cs-people.bu.edu/jmzhang/sos.html
arxiv: http://arxiv.org/abs/1607.07525
paper: http://cs-people.bu.edu/jmzhang/SOS/SOS_preprint.pdf
caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
arxiv: http://arxiv.org/abs/1608.05177

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

intro: ECCV 2016
arxiv: http://arxiv.org/abs/1608.05186

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

arxiv: http://arxiv.org/abs/1608.08029

A Deep Multi-Level Network for Saliency Prediction

arxiv: http://arxiv.org/abs/1609.01064

Visual Saliency Detection Based on Multiscale Deep CNN Features

intro: IEEE Transactions on Image Processing
arxiv: http://arxiv.org/abs/1609.02077

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

intro: DSCLRCN
arxiv: https://arxiv.org/abs/1610.01708

Deeply supervised salient object detection with short connections

intro: IEEE TPAMI 2018 (IEEE CVPR 2017)
arxiv: https://arxiv.org/abs/1611.04849
github(official, Caffe): https://github.com/Andrew-Qibin/DSS
github(Tensorflow): https://github.com/Joker316701882/Salient-Object-Detection

Weakly Supervised Top-down Salient Object Detection

intro: Nanyang Technological University
arxiv: https://arxiv.org/abs/1611.05345

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

project page: https://imatge-upc.github.io/saliency-salgan-2017/
arxiv: https://arxiv.org/abs/1701.01081

Visual Saliency Prediction Using a Mixture of Deep Neural Networks

arxiv: https://arxiv.org/abs/1702.00372

A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network

arxiv: https://arxiv.org/abs/1702.00615

Saliency Detection by Forward and Backward Cues in Deep-CNNs

arxiv: https://arxiv.org/abs/1703.00152

Supervised Adversarial Networks for Image Saliency Detection

arxiv: https://arxiv.org/abs/1704.07242

Group-wise Deep Co-saliency Detection

arxiv: https://arxiv.org/abs/1707.07381

Towards the Success Rate of One: Real-time Unconstrained Salient Object Detection

intro: University of Maryland College Park & eBay Inc
arxiv: https://arxiv.org/abs/1708.00079

Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

intro: ICCV 2017
arixv: https://arxiv.org/abs/1708.02001

Learning Uncertain Convolutional Features for Accurate Saliency Detection

intro: Accepted as a poster in ICCV 2017
arxiv: https://arxiv.org/abs/1708.02031

Deep Edge-Aware Saliency Detection

arxiv: https://arxiv.org/abs/1708.04366

Self-explanatory Deep Salient Object Detection

intro: National University of Defense Technology, China & National University of Singapore
arxiv: https://arxiv.org/abs/1708.05595

PiCANet: Learning Pixel-wise Contextual Attention in ConvNets and Its Application in Saliency Detection

arxiv: https://arxiv.org/abs/1708.06433

DeepFeat: A Bottom Up and Top Down Saliency Model Based on Deep Features of Convolutional Neural Nets

arxiv: https://arxiv.org/abs/1709.02495

Recurrently Aggregating Deep Features for Salient Object Detection

intro: AAAI 2018
paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16775/16281

Deep saliency: What is learnt by a deep network about saliency?

intro: 2nd Workshop on Visualisation for Deep Learning in the 34th International Conference On Machine Learning
arxiv: https://arxiv.org/abs/1801.04261

Contrast-Oriented Deep Neural Networks for Salient Object Detection

intro: TNNLS
arxiv: https://arxiv.org/abs/1803.11395

Salient Object Detection by Lossless Feature Reflection

intro: IJCAI 2018
arxiv: https://arxiv.org/abs/1802.06527

HyperFusion-Net: Densely Reflective Fusion for Salient Object Detection

arxiv: https://arxiv.org/abs/1804.05142


Video Saliency Detection

Deep Learning For Video Saliency Detection

arxiv: https://arxiv.org/abs/1702.00871

Video Salient Object Detection Using Spatiotemporal Deep Features

arxiv: https://arxiv.org/abs/1708.01447

Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

arxiv: https://arxiv.org/abs/1709.06316


Visual Relationship Detection

Visual Relationship Detection with Language Priors

intro: ECCV 2016 oral
paper: https://cs.stanford.edu/people/ranjaykrishna/vrd/vrd.pdf
github: https://github.com/Prof-Lu-Cewu/Visual-Relationship-Detection

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS)
arxiv: https://arxiv.org/abs/1702.07191

Visual Translation Embedding Network for Visual Relation Detection

arxiv: https://www.arxiv.org/abs/1702.08319

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

intro: CVPR 2017 spotlight paper
arxiv: https://arxiv.org/abs/1703.03054

Detecting Visual Relationships with Deep Relational Networks

intro: CVPR 2017 oral. The Chinese University of Hong Kong
arxiv: https://arxiv.org/abs/1704.03114

Identifying Spatial Relations in Images using Convolutional Neural Networks

arxiv: https://arxiv.org/abs/1706.04215

PPR-FCN: Weakly Supervised Visual Relation Detection via Parallel Pairwise R-FCN

intro: ICCV
arxiv: https://arxiv.org/abs/1708.01956

Natural Language Guided Visual Relationship Detection

arxiv: https://arxiv.org/abs/1711.06032

Detecting Visual Relationships Using Box Attention

intro: Google AI & IST Austria
arxiv: https://arxiv.org/abs/1807.02136

Google AI Open Images - Visual Relationship Track

intro: Detect pairs of objects in particular relationships
kaggle: https://www.kaggle.com/c/google-ai-open-images-visual-relationship-track

Context-Dependent Diffusion Network for Visual Relationship Detection

intro: 2018 ACM Multimedia Conference
arxiv: https://arxiv.org/abs/1809.06213

A Problem Reduction Approach for Visual Relationships Detection

intro: ECCV 2018 Workshop
arxiv: https://arxiv.org/abs/1809.09828


Face Deteciton

Multi-view Face Detection Using Deep Convolutional Neural Networks

intro: Yahoo
arxiv: http://arxiv.org/abs/1502.02766
github: https://github.com/guoyilin/FaceDetection_CNN

From Facial Parts Responses to Face Detection: A Deep Learning Approach

intro: ICCV 2015. CUHK
project page: http://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html
arxiv: https://arxiv.org/abs/1509.06451
paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_From_Facial_Parts_ICCV_2015_paper.pdf

Compact Convolutional Neural Network Cascade for Face Detection

arxiv: http://arxiv.org/abs/1508.01292
github: https://github.com/Bkmz21/FD-Evaluation
github: https://github.com/Bkmz21/CompactCNNCascade

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

intro: ECCV 2016
arxiv: https://arxiv.org/abs/1606.00850
github(MXNet): https://github.com/tfwu/FaceDetection-ConvNet-3D

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

intro: CMU
arxiv: https://arxiv.org/abs/1606.05413

Towards a Deep Learning Framework for Unconstrained Face Detection

intro: overlap with CMS-RCNN
arxiv: https://arxiv.org/abs/1612.05322

Supervised Transformer Network for Efficient Face Detection

arxiv: http://arxiv.org/abs/1607.05477

UnitBox: An Advanced Object Detection Network

intro: ACM MM 2016
keywords: IOULoss
arxiv: http://arxiv.org/abs/1608.01471

Bootstrapping Face Detection with Hard Negative Examples

author: 萬韶華 @ 小米.
intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
arxiv: http://arxiv.org/abs/1608.02236

Grid Loss: Detecting Occluded Faces

intro: ECCV 2016
arxiv: https://arxiv.org/abs/1609.00129
paper: http://lrs.icg.tugraz.at/pubs/opitz_eccv_16.pdf
poster: http://www.eccv2016.org/files/posters/P-2A-34.pdf

A Multi-Scale Cascade Fully Convolutional Network Face Detector

intro: ICPR 2016
arxiv: http://arxiv.org/abs/1609.03536


MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

project page: https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
arxiv: https://arxiv.org/abs/1604.02878
github(official, Matlab): https://github.com/kpzhang93/MTCNN_face_detection_alignment
github: https://github.com/pangyupo/mxnet_mtcnn_face_detection
github: https://github.com/DaFuCoding/MTCNN_Caffe
github(MXNet): https://github.com/Seanlinx/mtcnn
github: https://github.com/Pi-DeepLearning/RaspberryPi-FaceDetection-MTCNN-Caffe-With-Motion
github(Caffe): https://github.com/foreverYoungGitHub/MTCNN
github: https://github.com/CongWeilin/mtcnn-caffe
github(OpenCV+OpenBlas): https://github.com/AlphaQi/MTCNN-light
github(Tensorflow+golang): https://github.com/jdeng/goface

Face Detection using Deep Learning: An Improved Faster RCNN Approach

intro: DeepIR Inc
arxiv: https://arxiv.org/abs/1701.08289

Faceness-Net: Face Detection through Deep Facial Part Responses

intro: An extended version of ICCV 2015 paper
arxiv: https://arxiv.org/abs/1701.08393

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”

intro: CVPR 2017. MP-RCNN, MP-RPN
arxiv: https://arxiv.org/abs/1703.09145

End-To-End Face Detection and Recognition

arxiv: https://arxiv.org/abs/1703.10818

Face R-CNN

arxiv: https://arxiv.org/abs/1706.01061

Face Detection through Scale-Friendly Deep Convolutional Networks

arxiv: https://arxiv.org/abs/1706.02863

Scale-Aware Face Detection

intro: CVPR 2017. SenseTime & Tsinghua University
arxiv: https://arxiv.org/abs/1706.09876

Detecting Faces Using Inside Cascaded Contextual CNN

intro: CVPR 2017. Tencent AI Lab & SenseTime
paper: http://ai.tencent.com/ailab/media/publications/Detecting_Faces_Using_Inside_Cascaded_Contextual_CNN.pdf

Multi-Branch Fully Convolutional Network for Face Detection

arxiv: https://arxiv.org/abs/1707.06330

SSH: Single Stage Headless Face Detector

intro: ICCV 2017. University of Maryland
arxiv: https://arxiv.org/abs/1708.03979
github(official, Caffe): https://github.com/mahyarnajibi/SSH

Dockerface: an easy to install and use Faster R-CNN face detector in a Docker container

arxiv: https://arxiv.org/abs/1708.04370

FaceBoxes: A CPU Real-time Face Detector with High Accuracy

intro: IJCB 2017
keywords: Rapidly Digested Convolutional Layers (RDCL), Multiple Scale Convolutional Layers (MSCL)
intro: the proposed detector runs at 20 FPS on a single CPU core and 125 FPS using a GPU for VGA-resolution images
arxiv: https://arxiv.org/abs/1708.05234
github(official): https://github.com/sfzhang15/FaceBoxes
github(Caffe): https://github.com/zeusees/FaceBoxes

S3FD: Single Shot Scale-invariant Face Detector

intro: ICCV 2017. Chinese Academy of Sciences
intro: can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images
arxiv: https://arxiv.org/abs/1708.05237
github(Caffe, official): https://github.com/sfzhang15/SFD
github: https://github.com//clcarwin/SFD_pytorch

Detecting Faces Using Region-based Fully Convolutional Networks

arxiv: https://arxiv.org/abs/1709.05256

AffordanceNet: An End-to-End Deep Learning Approach for Object Affordance Detection

arxiv: https://arxiv.org/abs/1709.07326

Face Attention Network: An effective Face Detector for the Occluded Faces

arxiv: https://arxiv.org/abs/1711.07246

Feature Agglomeration Networks for Single Stage Face Detection

arxiv: https://arxiv.org/abs/1712.00721

Face Detection Using Improved Faster RCNN

intro: Huawei Cloud BU
arxiv: https://arxiv.org/abs/1802.02142

PyramidBox: A Context-assisted Single Shot Face Detector

intro: Baidu, Inc
arxiv: https://arxiv.org/abs/1803.07737

A Fast Face Detection Method via Convolutional Neural Network

intro: Neurocomputing
arxiv: https://arxiv.org/abs/1803.10103

Beyond Trade-off: Accelerate FCN-based Face Detector with Higher Accuracy

intro: CVPR 2018. Beihang University & CUHK & Sensetime
arxiv: https://arxiv.org/abs/1804.05197

Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1804.06039
github: https://github.com/Jack-CV/PCN

SFace: An Efficient Network for Face Detection in Large Scale Variations

intro: Beihang University & Megvii Inc. (Face++)
arxiv: https://arxiv.org/abs/1804.06559

Survey of Face Detection on Low-quality Images

arxiv: https://arxiv.org/abs/1804.07362

Anchor Cascade for Efficient Face Detection

intro: The University of Sydney
arxiv: https://arxiv.org/abs/1805.03363

Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization

intro: IEEE MMSP
arxiv: https://arxiv.org/abs/1805.12302

Selective Refinement Network for High Performance Face Detection

https://arxiv.org/abs/1809.02693

DSFD: Dual Shot Face Detector

arxiv:https://arxiv.org/abs/1810.10220

Learning Better Features for Face Detection with Feature Fusion and Segmentation Supervision

arxiv:https://arxiv.org/abs/1811.08557

FA-RPN: Floating Region Proposals for Face Detection

arxiv: https://arxiv.org/abs/1812.05586

Robust and High Performance Face Detector

https://arxiv.org/abs/1901.02350

DAFE-FD: Density Aware Feature Enrichment for Face Detection

arxiv: https://arxiv.org/abs/1901.05375

Improved Selective Refinement Network for Face Detection

intro: Chinese Academy of Sciences & JD AI Research
arxiv: https://arxiv.org/abs/1901.06651

Revisiting a single-stage method for face detection

arxiv: https://arxiv.org/abs/1902.01559


Detect Small Faces

Finding Tiny Faces

intro: CVPR 2017. CMU
project page: http://www.cs.cmu.edu/~peiyunh/tiny/index.html
arxiv: https://arxiv.org/abs/1612.04402
github(official, Matlab): https://github.com/peiyunh/tiny
github(inference-only): https://github.com/chinakook/hr101_mxnet
github: https://github.com/cydonia999/Tiny_Faces_in_Tensorflow

Detecting and counting tiny faces

intro: ENS Paris-Saclay. ExtendedTinyFaces
intro: Detecting and counting small objects - Analysis, review and application to counting
arxiv: https://arxiv.org/abs/1801.06504
github: https://github.com/alexattia/ExtendedTinyFaces

Seeing Small Faces from Robust Anchor’s Perspective

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1802.09058

Face-MagNet: Magnifying Feature Maps to Detect Small Faces

intro: WACV 2018
keywords: Face Magnifier Network (Face-MageNet)
arxiv: https://arxiv.org/abs/1803.05258
github: https://github.com/po0ya/face-magnet

Robust Face Detection via Learning Small Faces on Hard Images

intro: Johns Hopkins University & Stanford University
arxiv: https://arxiv.org/abs/1811.11662
github: https://github.com/bairdzhang/smallhardface

SFA: Small Faces Attention Face Detector

intro: Jilin University
arxiv: https://arxiv.org/abs/1812.08402


Person Head Detection

Context-aware CNNs for person head detection

intro: ICCV 2015
project page: http://www.di.ens.fr/willow/research/headdetection/
arxiv: http://arxiv.org/abs/1511.07917
github: https://github.com/aosokin/cnn_head_detection

Detecting Heads using Feature Refine Net and Cascaded Multi-scale Architecture

arxiv: https://arxiv.org/abs/1803.09256

A Comparison of CNN-based Face and Head Detectors for Real-Time Video Surveillance Applications

https://arxiv.org/abs/1809.03336

FCHD: A fast and accurate head detector

arxiv: https://arxiv.org/abs/1809.08766
github(PyTorch, official): https://github.com/aditya-vora/FCHD-Fully-Convolutional-Head-Detector


Pedestrian Detection / People Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

intro: CVPR 2015
project page: http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
arxiv: http://arxiv.org/abs/1412.0069

Deep Learning Strong Parts for Pedestrian Detection

intro: ICCV 2015. CUHK. DeepParts
intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
paper: http://personal.ie.cuhk.edu.hk/~pluo/pdf/tianLWTiccv15.pdf

Taking a Deeper Look at Pedestrians

intro: CVPR 2015
arxiv: https://arxiv.org/abs/1501.05790

Convolutional Channel Features

intro: ICCV 2015
arxiv: https://arxiv.org/abs/1504.07339
github: https://github.com/byangderek/CCF

End-to-end people detection in crowded scenes

arxiv: http://arxiv.org/abs/1506.04878
github: https://github.com/Russell91/reinspect
ipn: http://nbviewer.ipython.org/github/Russell91/ReInspect/blob/master/evaluation_reinspect.ipynb
youtube: https://www.youtube.com/watch?v=QeWl0h3kQ24

Learning Complexity-Aware Cascades for Deep Pedestrian Detection

intro: ICCV 2015
arxiv: https://arxiv.org/abs/1507.05348

Deep convolutional neural networks for pedestrian detection

arxiv: http://arxiv.org/abs/1510.03608
github: https://github.com/DenisTome/DeepPed

Scale-aware Fast R-CNN for Pedestrian Detection

arxiv: https://arxiv.org/abs/1510.08160

New algorithm improves speed and accuracy of pedestrian detection

blog: http://www.eurekalert.org/pub_releases/2016-02/uoc–nai020516.php

Pushing the Limits of Deep CNNs for Pedestrian Detection

intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
arxiv: http://arxiv.org/abs/1603.04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

arxiv: http://arxiv.org/abs/1607.04436

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

arxiv: http://arxiv.org/abs/1607.04441

Is Faster R-CNN Doing Well for Pedestrian Detection?

intro: ECCV 2016
arxiv: http://arxiv.org/abs/1607.07032
github: https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian

Unsupervised Deep Domain Adaptation for Pedestrian Detection

intro: ECCV Workshop 2016
arxiv: https://arxiv.org/abs/1802.03269

Reduced Memory Region Based Deep Convolutional Neural Network Detection

intro: IEEE 2016 ICCE-Berlin
arxiv: http://arxiv.org/abs/1609.02500

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

arxiv: https://arxiv.org/abs/1610.03466

Detecting People in Artwork with CNNs

intro: ECCV 2016 Workshops
arxiv: https://arxiv.org/abs/1610.08871

Multispectral Deep Neural Networks for Pedestrian Detection

intro: BMVC 2016 oral
arxiv: https://arxiv.org/abs/1611.02644

Box-level Segmentation Supervised Deep Neural Networks for Accurate and Real-time Multispectral Pedestrian Detection

arxiv: https://arxiv.org/abs/1902.05291

Deep Multi-camera People Detection

arxiv: https://arxiv.org/abs/1702.04593

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

intro: CVPR 2017
project page: http://ml.cs.tsinghua.edu.cn:5000/publications/synunity/
arxiv: https://arxiv.org/abs/1703.06283
github(Tensorflow): https://github.com/huangshiyu13/RPNplus

What Can Help Pedestrian Detection?

intro: CVPR 2017. Tsinghua University & Peking University & Megvii Inc.
keywords: Faster R-CNN, HyperLearner
arxiv: https://arxiv.org/abs/1705.02757
paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Mao_What_Can_Help_CVPR_2017_paper.pdf

Illuminating Pedestrians via Simultaneous Detection & Segmentation

arxiv: https://arxiv.org/abs/1706.08564

Rotational Rectification Network for Robust Pedestrian Detection

intro: CMU & Volvo Construction
arxiv: https://arxiv.org/abs/1706.08917

STD-PD: Generating Synthetic Training Data for Pedestrian Detection in Unannotated Videos

intro: The University of North Carolina at Chapel Hill
arxiv: https://arxiv.org/abs/1707.09100

Too Far to See? Not Really! — Pedestrian Detection with Scale-aware Localization Policy

arxiv: https://arxiv.org/abs/1709.00235

Repulsion Loss: Detecting Pedestrians in a Crowd

arxiv: https://arxiv.org/abs/1711.07752

Aggregated Channels Network for Real-Time Pedestrian Detection

arxiv: https://arxiv.org/abs/1801.00476

Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian Detection

intro: State Key Lab of CAD&CG, Zhejiang University
arxiv: https://arxiv.org/abs/1803.05347

Exploring Multi-Branch and High-Level Semantic Networks for Improving Pedestrian Detection

arxiv: https://arxiv.org/abs/1804.00872

Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond

arxiv: https://arxiv.org/abs/1804.02047

PCN: Part and Context Information for Pedestrian Detection with CNNs

intro: British Machine Vision Conference(BMVC) 2017
arxiv: https://arxiv.org/abs/1804.04483

Small-scale Pedestrian Detection Based on Somatic Topology Localization and Temporal Feature Aggregation

intro: ECCV 2018. Hikvision Research Institute
arxiv: https://arxiv.org/abs/1807.01438

Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd

intro: ECCV 2018
arxiv: https://arxiv.org/abs/1807.08407

Multispectral Pedestrian Detection via Simultaneous Detection and Segmentation

intro: BMVC 2018
arxiv: https://arxiv.org/abs/1808.04818

Pedestrian Detection with Autoregressive Network Phases

intro: Michigan State University
arxiv: https://arxiv.org/abs/1812.00440

The Cross-Modality Disparity Problem in Multispectral Pedestrian Detection

-arxiv: https://arxiv.org/abs/1901.02645


Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

intro: ECCV 2016
arxiv: http://arxiv.org/abs/1607.04564

Evolving Boxes for fast Vehicle Detection

arxiv: https://arxiv.org/abs/1702.00254

Fine-Grained Car Detection for Visual Census Estimation

intro: AAAI 2016
arxiv: https://arxiv.org/abs/1709.02480

SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection

intro: IEEE Transactions on Intelligent Transportation Systems (T-ITS)
arxiv: https://arxiv.org/abs/1804.00433

Label and Sample: Efficient Training of Vehicle Object Detector from Sparsely Labeled Data

intro: UC Berkeley
arxiv: https://arxiv.org/abs/1808.08603

Domain Randomization for Scene-Specific Car Detection and Pose Estimation

arxiv:https://arxiv.org/abs/1811.05939

ShuffleDet: Real-Time Vehicle Detection Network in On-board Embedded UAV Imagery

intro: ECCV 2018, UAVision 2018
arxiv: https://arxiv.org/abs/1811.06318


Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

intro: CVPR 2016
project page(code+dataset): http://cg.cs.tsinghua.edu.cn/traffic-sign/
paper: http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
code & model: http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/newdata0411.zip

Evaluating State-of-the-art Object Detector on Challenging Traffic Light Data

intro: CVPR 2017 workshop
paper: http://openaccess.thecvf.com/content_cvpr_2017_workshops/w9/papers/Jensen_Evaluating_State-Of-The-Art_Object_CVPR_2017_paper.pdf

Detecting Small Signs from Large Images

intro: IEEE Conference on Information Reuse and Integration (IRI) 2017 oral
arxiv: https://arxiv.org/abs/1706.08574

Localized Traffic Sign Detection with Multi-scale Deconvolution Networks

arxiv: https://arxiv.org/abs/1804.10428

Detecting Traffic Lights by Single Shot Detection

intro: ITSC 2018
arxiv: https://arxiv.org/abs/1805.02523

A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection

intro: IEEE 15th Conference on Computer and Robot Vision
arxiv: https://arxiv.org/abs/1806.07987
demo: https://www.youtube.com/watch?v=_YmogPzBXOw&feature=youtu.be


Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

arxiv: http://arxiv.org/abs/1603.09446
github: https://github.com/zeakey/DeepSkeleton

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

arxiv: http://arxiv.org/abs/1609.03659

SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

intro: CVPR 2017
arxiv: https://arxiv.org/abs/1703.02243
github: https://github.com/KevinKecc/SRN

Hi-Fi: Hierarchical Feature Integration for Skeleton Detection

arxiv: https://arxiv.org/abs/1801.01849


Fruit Detection

Deep Fruit Detection in Orchards

arxiv: https://arxiv.org/abs/1610.03677

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

intro: The Journal of Field Robotics in May 2016
project page: http://confluence.acfr.usyd.edu.au/display/AGPub/
arxiv: https://arxiv.org/abs/1610.08120


Shadow Detection

Fast Shadow Detection from a Single Image Using a Patched Convolutional Neural Network

arxiv: https://arxiv.org/abs/1709.09283

A+D-Net: Shadow Detection with Adversarial Shadow Attenuation

arxiv: https://arxiv.org/abs/1712.01361

Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal

arxiv: https://arxiv.org/abs/1712.02478

Direction-aware Spatial Context Features for Shadow Detection

intro: CVPR 2018
arxiv: https://arxiv.org/abs/1712.04142

Direction-aware Spatial Context Features for Shadow Detection and Removal

intro: The Chinese University of Hong Kong & The Hong Kong Polytechnic University
arxiv: https://arxiv.org/abs/1805.04635


Others Detection

Deep Deformation Network for Object Landmark Localization

arxiv: http://arxiv.org/abs/1605.01014

Fashion Landmark Detection in the Wild

intro: ECCV 2016
project page: http://personal.ie.cuhk.edu.hk/~lz013/projects/FashionLandmarks.html
arxiv: http://arxiv.org/abs/1608.03049
github(Caffe): https://github.com/liuziwei7/fashion-landmarks

Deep Learning for Fast and Accurate Fashion Item Detection

intro: Kuznech Inc.
intro: MultiBox and Fast R-CNN
paper: https://kddfashion2016.mybluemix.net/kddfashion_finalSubmissions/Deep Learning for Fast and Accurate Fashion Item Detection.pdf

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

github: https://github.com/geometalab/OSMDeepOD

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

intro: IEEE SITIS 2016
arxiv: https://arxiv.org/abs/1611.04357

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

arxiv: https://arxiv.org/abs/1611.05424

Deep Cuboid Detection: Beyond 2D Bounding Boxes

intro: CMU & Magic Leap
arxiv: https://arxiv.org/abs/1611.10010

Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

arxiv: https://arxiv.org/abs/1612.03019

Deep Learning Logo Detection with Data Expansion by Synthesising Context

arxiv: https://arxiv.org/abs/1612.09322

Scalable Deep Learning Logo Detection

arxiv: https://arxiv.org/abs/1803.11417

Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

arxiv: https://arxiv.org/abs/1702.00307

Automatic Handgun Detection Alarm in Videos Using Deep Learning

arxiv: https://arxiv.org/abs/1702.05147
results: https://github.com/SihamTabik/Pistol-Detection-in-Videos

Objects as context for part detection

arxiv: https://arxiv.org/abs/1703.09529

Using Deep Networks for Drone Detection

intro: AVSS 2017
arxiv: https://arxiv.org/abs/1706.05726

Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1708.01642

Target Driven Instance Detection

arxiv: https://arxiv.org/abs/1803.04610

DeepVoting: An Explainable Framework for Semantic Part Detection under Partial Occlusion

arxiv: https://arxiv.org/abs/1709.04577

VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1710.06288
github: https://github.com/SeokjuLee/VPGNet

Grab, Pay and Eat: Semantic Food Detection for Smart Restaurants

arxiv: https://arxiv.org/abs/1711.05128

ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos

intro: WACV 2018
arxiv: https://arxiv.org/abs/1801.02031

Deep Learning Object Detection Methods for Ecological Camera Trap Data

intro: Conference of Computer and Robot Vision. University of Guelph
arxiv: https://arxiv.org/abs/1803.10842

EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection

arxiv: https://arxiv.org/abs/1806.05525

Towards End-to-End Lane Detection: an Instance Segmentation Approach

arxiv: https://arxiv.org/abs/1802.05591
github: https://github.com/MaybeShewill-CV/lanenet-lane-detection

iCAN: Instance-Centric Attention Network for Human-Object Interaction Detection

intro: BMVC 2018
project page: https://gaochen315.github.io/iCAN/
arxiv: https://arxiv.org/abs/1808.10437
github: https://github.com/vt-vl-lab/iCAN

Densely Supervised Grasp Detector (DSGD)

https://arxiv.org/abs/1810.03962


Object Proposal

DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

arxiv: http://arxiv.org/abs/1510.04445
github: https://github.com/aghodrati/deepproposal

Scale-aware Pixel-wise Object Proposal Networks

intro: IEEE Transactions on Image Processing
arxiv: http://arxiv.org/abs/1601.04798

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

intro: BMVC 2016. AttractioNet
arxiv: https://arxiv.org/abs/1606.04446
github: https://github.com/gidariss/AttractioNet

Learning to Segment Object Proposals via Recursive Neural Networks

arxiv: https://arxiv.org/abs/1612.01057

Learning Detection with Diverse Proposals

intro: CVPR 2017
keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
arxiv: https://arxiv.org/abs/1704.03533

ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

keywords: product detection
arxiv: https://arxiv.org/abs/1704.06752

Improving Small Object Proposals for Company Logo Detection

intro: ICMR 2017
arxiv: https://arxiv.org/abs/1704.08881

Open Logo Detection Challenge

intro: BMVC 2018
keywords: QMUL-OpenLogo
project page: https://qmul-openlogo.github.io/
arxiv: https://arxiv.org/abs/1807.01964

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

intro: ACCV 2018 oral
arxiv: https://arxiv.org/abs/1811.08728
github: https://github.com/chwilms/AttentionMask


Localization

Beyond Bounding Boxes: Precise Localization of Objects in Images

intro: PhD Thesis
homepage: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.html
phd-thesis: http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-193.pdf
github(“SDS using hypercolumns”): https://github.com/bharath272/sds

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

arxiv: http://arxiv.org/abs/1503.00949

Weakly Supervised Object Localization Using Size Estimates

arxiv: http://arxiv.org/abs/1608.04314

Active Object Localization with Deep Reinforcement Learning

intro: ICCV 2015
keywords: Markov Decision Process
arxiv: https://arxiv.org/abs/1511.06015

Localizing objects using referring expressions

intro: ECCV 2016
keywords: LSTM, multiple instance learning (MIL)
paper: http://www.umiacs.umd.edu/~varun/files/refexp-ECCV16.pdf
github: https://github.com/varun-nagaraja/referring-expressions

LocNet: Improving Localization Accuracy for Object Detection

intro: CVPR 2016 oral
arxiv: http://arxiv.org/abs/1511.07763
github: https://github.com/gidariss/LocNet

Learning Deep Features for Discriminative Localization

homepage: http://cnnlocalization.csail.mit.edu/
arxiv: http://arxiv.org/abs/1512.04150
github(Tensorflow): https://github.com/jazzsaxmafia/Weakly_detector
github: https://github.com/metalbubble/CAM
github: https://github.com/tdeboissiere/VGG16CAM-keras

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

intro: ECCV 2016
project page: http://www.di.ens.fr/willow/research/contextlocnet/
arxiv: http://arxiv.org/abs/1609.04331
github: https://github.com/vadimkantorov/contextlocnet

Ensemble of Part Detectors for Simultaneous Classification and Localization

arxiv: https://arxiv.org/abs/1705.10034

STNet: Selective Tuning of Convolutional Networks for Object Localization

arxiv: https://arxiv.org/abs/1708.06418

Soft Proposal Networks for Weakly Supervised Object Localization

intro: ICCV 2017
arxiv: https://arxiv.org/abs/1709.01829

Fine-grained Discriminative Localization via Saliency-guided Faster R-CNN

intro: ACM MM 2017
arxiv: https://arxiv.org/abs/1709.08295


Tutorials / Talks

Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

slides: http://research.microsoft.com/en-us/um/people/kahe/iccv15tutorial/iccv2015_tutorial_convolutional_feature_maps_kaiminghe.pdf

Towards Good Practices for Recognition & Detection

intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
slides: http://image-net.org/challenges/talks/2016/Hikvision_at_ImageNet_2016.pdf

Work in progress: Improving object detection and instance segmentation for small objects

https://docs.google.com/presentation/d/1OTfGn6mLe1VWE8D0q6Tu_WwFTSoLGd4OF8WCYnOWcVo/edit

Object Detection with Deep Learning: A Review

arxiv: https://arxiv.org/abs/1807.05511


Projects

Detectron

intro: FAIR’s research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
github: https://github.com/facebookresearch/Detectron

TensorBox: a simple framework for training neural networks to detect objects in images

intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of the ReInspect algorithm”
github: https://github.com/Russell91/TensorBox

Object detection in torch: Implementation of some object detection frameworks in torch

github: https://github.com/fmassa/object-detection.torch

Using DIGITS to train an Object Detection network

github: https://github.com/NVIDIA/DIGITS/blob/master/examples/object-detection/README.md

FCN-MultiBox Detector

intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
github: https://github.com/teaonly/FMD.torch

KittiBox: A car detection model implemented in Tensorflow.

keywords: MultiNet
intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
github: https://github.com/MarvinTeichmann/KittiBox

Deformable Convolutional Networks + MST + Soft-NMS

github: https://github.com/bharatsingh430/Deformable-ConvNets

How to Build a Real-time Hand-Detector using Neural Networks (SSD) on Tensorflow

blog: https://towardsdatascience.com/how-to-build-a-real-time-hand-detector-using-neural-networks-ssd-on-tensorflow-d6bac0e4b2ce
github: https://github.com//victordibia/handtracking

Metrics for object detection

intro: Most popular metrics used to evaluate object detection algorithms
github: https://github.com/rafaelpadilla/Object-Detection-Metrics

MobileNetv2-SSDLite

intro: Caffe implementation of SSD and SSDLite detection on MobileNetv2, converted from tensorflow.
github: https://github.com/chuanqi305/MobileNetv2-SSDLite


Leaderboard

Detection Results: VOC2012

intro: Competition “comp4” (train on additional data)
homepage: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=4


Tools

BeaverDam: Video annotation tool for deep learning training labels

https://github.com/antingshen/BeaverDam


Blogs

Convolutional Neural Networks for Object Detection

http://rnd.azoft.com/convolutional-neural-networks-object-detection/

Introducing automatic object detection to visual search (Pinterest)

keywords: Faster R-CNN
blog: https://engineering.pinterest.com/blog/introducing-automatic-object-detection-visual-search
demo: https://engineering.pinterest.com/sites/engineering/files/Visual Search V1 - Video.mp4
review: https://news.developer.nvidia.com/pinterest-introduces-the-future-of-visual-search/?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

Deep Learning for Object Detection with DIGITS

blog: https://devblogs.nvidia.com/parallelforall/deep-learning-object-detection-digits/

Analyzing The Papers Behind Facebook’s Computer Vision Approach

keywords: DeepMask, SharpMask, MultiPathNet
blog: https://adeshpande3.github.io/adeshpande3.github.io/Analyzing-the-Papers-Behind-Facebook’s-Computer-Vision-Approach/

Easily Create High Quality Object Detectors with Deep Learning

intro: dlib v19.2
blog: http://blog.dlib.net/2016/10/easily-create-high-quality-object.html

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

blog: https://blogs.technet.microsoft.com/machinelearning/2016/10/25/how-to-train-a-deep-learned-object-detection-model-in-cntk/
github: https://github.com/Microsoft/CNTK/tree/master/Examples/Image/Detection/FastRCNN

Object Detection in Satellite Imagery, a Low Overhead Approach

part 1: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-i-cbd96154a1b7
part 2: https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92

You Only Look Twice?—?Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

part 1: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-38dad1cf7571
part 2: https://medium.com/the-downlinq/you-only-look-twice-multi-scale-object-detection-in-satellite-imagery-with-convolutional-neural-34f72f659588

Faster R-CNN Pedestrian and Car Detection

blog: https://bigsnarf.wordpress.com/2016/11/07/faster-r-cnn-pedestrian-and-car-detection/
ipn: https://gist.github.com/bigsnarfdude/2f7b2144065f6056892a98495644d3e0
github: https://github.com/bigsnarfdude/Faster-RCNN_TF

Small U-Net for vehicle detection

blog: https://medium.com/@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6

Region of interest pooling explained

blog: https://deepsense.io/region-of-interest-pooling-explained/
github: https://github.com/deepsense-io/roi-pooling

Supercharge your Computer Vision models with the TensorFlow Object Detection API

blog: https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
github: https://github.com/tensorflow/models/tree/master/object_detection

Understanding SSD MultiBox?—?Real-Time Object Detection In Deep Learning

https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab

One-shot object detection

http://machinethink.net/blog/object-detection/

An overview of object detection: one-stage methods

https://www.jeremyjordan.me/object-detection-one-stage/

deep learning object detection

intro: A paper list of object detection using deep learning.
github: https://github.com/hoya012/deep_learning_object_detection

                                </div>
            <link  rel="stylesheet">
                </div>
</article>

總結

以上是生活随笔為你收集整理的Object Detection(目标检测神文)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

歡迎分享!

轉載請說明來源于"生活随笔",并保留原作者的名字。

本文地址:Object Detection(目标检测神文)