深度学习(33)随机梯度下降十一: TensorBoard可视化
生活随笔
收集整理的這篇文章主要介紹了
深度学习(33)随机梯度下降十一: TensorBoard可视化
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
深度學(xué)習(xí)(33)隨機(jī)梯度下降十一: TensorBoard可視化
- Step1. run listener
- Step2. build summary
- Step3.1 fed scalar(監(jiān)聽(tīng)標(biāo)量)
- Step3.2 fed single Image(監(jiān)聽(tīng)單張圖片)
- Step3.3 fed multi-images(監(jiān)聽(tīng)多張圖片)
- Step3.4 將多張圖片組合為一張圖片:
TensorBoard
- Installation
- Curves
- Image Visualization
Installation
Principle
- Listen logdir
監(jiān)聽(tīng)目錄 - build summary instance
新建一個(gè)日志 - fed data into summary instance
將數(shù)據(jù)送入日志
Step1. run listener
進(jìn)入需要監(jiān)聽(tīng)的文件夾
cd /Users/xuruihang/Documents/深度學(xué)習(xí)啟動(dòng)
tensorboard –logdir logs如圖所示:
進(jìn)入http://localhost:6006/,如圖所示:
Step2. build summary
current_time = datetime.datetime.now().strftime(“%Y%m%d-%H%M%S”) log_dir = ‘logs/’ + current_time summary_writer = tf.summary.create_file_writer(log_dir)其中,log_dir為監(jiān)聽(tīng)文件的路徑。
Step3.1 fed scalar(監(jiān)聽(tīng)標(biāo)量)
with summary_writer.as_default():tf.summary.scalar(‘loss’, float(loss), step=epoch) tf.summary.scalar(‘a(chǎn)ccuracy’, float(train_accuracy), step=epoch)其中,step默認(rèn)為x軸。
Step3.2 fed single Image(監(jiān)聽(tīng)單張圖片)
# get x from (x,y) sample_img = next(iter(db))[0] # get first image instance sample_img = sample_img[0] sample_img = tf.reshape(sample_img, [1, 28, 28, 1]) with summary_writer.as_default():tf.summary.image(“Training sample:”, sample_img, step=0)如圖所示:
Step3.3 fed multi-images(監(jiān)聽(tīng)多張圖片)
val_images = x[:25] val_images = tf.reshape(val_images, [-1, 28, 28, 1]) with summary_writer.as_default():tf.summary.scalar(‘test-acc’, float(loss), step=step)tf.summary.image(“val-onebyone-images:”, val_images, max_outputs=25, step=step)如圖所示:
Step3.4 將多張圖片組合為一張圖片:
val_images = tf.reshape(val_images, [-1, 28, 28]) figure = image_grid(val_images) tf.summary.image(‘val-images:’, plot_to_image(figure), step=step)如圖所示:
參考文獻(xiàn):
[1] 龍良曲:《深度學(xué)習(xí)與TensorFlow2入門實(shí)戰(zhàn)》
總結(jié)
以上是生活随笔為你收集整理的深度学习(33)随机梯度下降十一: TensorBoard可视化的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: rpm命令
- 下一篇: 深度学习之自编码器(1)自编码器原理