【算法竞赛学习】二手车交易价格预测-Task4建模调参
二手車交易價(jià)格預(yù)測(cè)-Task4 建模調(diào)參
四、建模與調(diào)參
Tip:此部分為零基礎(chǔ)入門數(shù)據(jù)挖掘的 Task4 建模調(diào)參 部分,帶你來(lái)了解各種模型以及模型的評(píng)價(jià)和調(diào)參策略,歡迎大家后續(xù)多多交流。
賽題:零基礎(chǔ)入門數(shù)據(jù)挖掘 - 二手車交易價(jià)格預(yù)測(cè)
地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX
5.1 學(xué)習(xí)目標(biāo)
- 了解常用的機(jī)器學(xué)習(xí)模型,并掌握機(jī)器學(xué)習(xí)模型的建模與調(diào)參流程
- 完成相應(yīng)學(xué)習(xí)打卡任務(wù)
5.2 內(nèi)容介紹
- 線性回歸對(duì)于特征的要求;
- 處理長(zhǎng)尾分布;
- 理解線性回歸模型;
- 評(píng)價(jià)函數(shù)與目標(biāo)函數(shù);
- 交叉驗(yàn)證方法;
- 留一驗(yàn)證方法;
- 針對(duì)時(shí)間序列問(wèn)題的驗(yàn)證;
- 繪制學(xué)習(xí)率曲線;
- 繪制驗(yàn)證曲線;
- Lasso回歸;
- Ridge回歸;
- 決策樹;
- 常用線性模型;
- 常用非線性模型;
- 貪心調(diào)參方法;
- 網(wǎng)格調(diào)參方法;
- 貝葉斯調(diào)參方法;
5.3 相關(guān)原理介紹與推薦
由于相關(guān)算法原理篇幅較長(zhǎng),本文推薦了一些博客與教材供初學(xué)者們進(jìn)行學(xué)習(xí)。
5.3.1 線性回歸模型
https://zhuanlan.zhihu.com/p/49480391
5.3.2 決策樹模型
https://zhuanlan.zhihu.com/p/65304798
5.3.3 GBDT模型
https://zhuanlan.zhihu.com/p/45145899
5.3.4 XGBoost模型
https://zhuanlan.zhihu.com/p/86816771
5.3.5 LightGBM模型
https://zhuanlan.zhihu.com/p/89360721
5.3.6 推薦教材:
- 《機(jī)器學(xué)習(xí)》 https://book.douban.com/subject/26708119/
- 《統(tǒng)計(jì)學(xué)習(xí)方法》 https://book.douban.com/subject/10590856/
- 《Python大戰(zhàn)機(jī)器學(xué)習(xí)》 https://book.douban.com/subject/26987890/
- 《面向機(jī)器學(xué)習(xí)的特征工程》 https://book.douban.com/subject/26826639/
- 《數(shù)據(jù)科學(xué)家訪談錄》 https://book.douban.com/subject/30129410/
5.4 代碼示例
5.4.1 讀取數(shù)據(jù)
import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore')reduce_mem_usage 函數(shù)通過(guò)調(diào)整數(shù)據(jù)類型,幫助我們減少數(shù)據(jù)在內(nèi)存中占用的空間
def reduce_mem_usage(df):""" iterate through all the columns of a dataframe and modify the data typeto reduce memory usage. """start_mem = df.memory_usage().sum() print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))for col in df.columns:col_type = df[col].dtypeif col_type != object:c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64) else:if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:df[col] = df[col].astype(np.float16)elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)else:df[col] = df[col].astype('category')end_mem = df.memory_usage().sum() print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))return df sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv')) Memory usage of dataframe is 60507328.00 MB Memory usage after optimization is: 15724107.00 MB Decreased by 74.0% continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]5.4.2 線性回歸 & 五折交叉驗(yàn)證 & 模擬真實(shí)業(yè)務(wù)情況
sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True) sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32) train = sample_feature[continuous_feature_names + ['price']]train_X = train[continuous_feature_names] train_y = train['price']5.4.2 - 1 簡(jiǎn)單建模
from sklearn.linear_model import LinearRegression model = LinearRegression(normalize=True) model = model.fit(train_X, train_y)查看訓(xùn)練的線性回歸模型的截距(intercept)與權(quán)重(coef)
'intercept:'+ str(model.intercept_)sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True) [('v_6', 3342612.384537345),('v_8', 684205.534533214),('v_9', 178967.94192530424),('v_7', 35223.07319016895),('v_5', 21917.550249749802),('v_3', 12782.03250792227),('v_12', 11654.925634146672),('v_13', 9884.194615297649),('v_11', 5519.182176035517),('v_10', 3765.6101415594258),('gearbox', 900.3205339198406),('fuelType', 353.5206495542567),('bodyType', 186.51797317460046),('city', 45.17354204168846),('power', 31.163045441455335),('brand_price_median', 0.535967111869784),('brand_price_std', 0.4346788365040235),('brand_amount', 0.15308295553300566),('brand_price_max', 0.003891831020467389),('seller', -1.2684613466262817e-06),('offerType', -4.759058356285095e-06),('brand_price_sum', -2.2430642281682917e-05),('name', -0.00042591632723759166),('used_time', -0.012574429533889028),('brand_price_average', -0.414105722833381),('brand_price_min', -2.3163823428971835),('train', -5.392535065078232),('power_bin', -59.24591853031839),('v_14', -233.1604256172217),('kilometer', -372.96600915402496),('notRepairedDamage', -449.29703564695365),('v_0', -1490.6790578168238),('v_4', -14219.648899108111),('v_2', -16528.55239086934),('v_1', -42869.43976200439)] from matplotlib import pyplot as plt subsample_index = np.random.randint(low=0, high=len(train_y), size=50)繪制特征v_9的值與標(biāo)簽的散點(diǎn)圖,圖片發(fā)現(xiàn)模型的預(yù)測(cè)結(jié)果(藍(lán)色點(diǎn))與真實(shí)標(biāo)簽(黑色點(diǎn))的分布差異較大,且部分預(yù)測(cè)值出現(xiàn)了小于0的情況,說(shuō)明我們的模型存在一些問(wèn)題
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black') plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue') plt.xlabel('v_9') plt.ylabel('price') plt.legend(['True Price','Predicted Price'],loc='upper right') print('The predicted price is obvious different from true price') plt.show() The predicted price is obvious different from true price通過(guò)作圖我們發(fā)現(xiàn)數(shù)據(jù)的標(biāo)簽(price)呈現(xiàn)長(zhǎng)尾分布,不利于我們的建模預(yù)測(cè)。原因是很多模型都假設(shè)數(shù)據(jù)誤差項(xiàng)符合正態(tài)分布,而長(zhǎng)尾分布的數(shù)據(jù)違背了這一假設(shè)。參考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829
import seaborn as sns print('It is clear to see the price shows a typical exponential distribution') plt.figure(figsize=(15,5)) plt.subplot(1,2,1) sns.distplot(train_y) plt.subplot(1,2,2) sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)]) It is clear to see the price shows a typical exponential distribution<matplotlib.axes._subplots.AxesSubplot at 0x1b33efb2f98>在這里我們對(duì)標(biāo)簽進(jìn)行了 log(x+1)log(x+1)log(x+1) 變換,使標(biāo)簽貼近于正態(tài)分布
train_y_ln = np.log(train_y + 1) import seaborn as sns print('The transformed price seems like normal distribution') plt.figure(figsize=(15,5)) plt.subplot(1,2,1) sns.distplot(train_y_ln) plt.subplot(1,2,2) sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)]) The transformed price seems like normal distribution<matplotlib.axes._subplots.AxesSubplot at 0x1b33f077160> model = model.fit(train_X, train_y_ln)print('intercept:'+ str(model.intercept_)) sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True) intercept:23.515920686637713[('v_9', 6.043993029165403),('v_12', 2.0357439855551394),('v_11', 1.3607608712255672),('v_1', 1.3079816298861897),('v_13', 1.0788833838535354),('v_3', 0.9895814429387444),('gearbox', 0.009170812023421397),('fuelType', 0.006447089787635784),('bodyType', 0.004815242907679581),('power_bin', 0.003151801949447194),('power', 0.0012550361843629999),('train', 0.0001429273782925814),('brand_price_min', 2.0721302299502698e-05),('brand_price_average', 5.308179717783439e-06),('brand_amount', 2.8308531339942507e-06),('brand_price_max', 6.764442596115763e-07),('offerType', 1.6765966392995324e-10),('seller', 9.308109838457312e-12),('brand_price_sum', -1.3473184925468486e-10),('name', -7.11403461065247e-08),('brand_price_median', -1.7608143661053008e-06),('brand_price_std', -2.7899058266986454e-06),('used_time', -5.6142735899344175e-06),('city', -0.0024992974087053223),('v_14', -0.012754139659375262),('kilometer', -0.013999175312751872),('v_0', -0.04553774829634237),('notRepairedDamage', -0.273686961116076),('v_7', -0.7455902679730504),('v_4', -0.9281349233755761),('v_2', -1.2781892166433606),('v_5', -1.5458846136756323),('v_10', -1.8059217242413748),('v_8', -42.611729973490604),('v_6', -241.30992120503035)]再次進(jìn)行可視化,發(fā)現(xiàn)預(yù)測(cè)結(jié)果與真實(shí)值較為接近,且未出現(xiàn)異常狀況
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black') plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue') plt.xlabel('v_9') plt.ylabel('price') plt.legend(['True Price','Predicted Price'],loc='upper right') print('The predicted price seems normal after np.log transforming') plt.show() The predicted price seems normal after np.log transforming5.4.2 - 2 五折交叉驗(yàn)證
在使用訓(xùn)練集對(duì)參數(shù)進(jìn)行訓(xùn)練的時(shí)候,經(jīng)常會(huì)發(fā)現(xiàn)人們通常會(huì)將一整個(gè)訓(xùn)練集分為三個(gè)部分(比如mnist手寫訓(xùn)練集)。一般分為:訓(xùn)練集(train_set),評(píng)估集(valid_set),測(cè)試集(test_set)這三個(gè)部分。這其實(shí)是為了保證訓(xùn)練效果而特意設(shè)置的。其中測(cè)試集很好理解,其實(shí)就是完全不參與訓(xùn)練的數(shù)據(jù),僅僅用來(lái)觀測(cè)測(cè)試效果的數(shù)據(jù)。而訓(xùn)練集和評(píng)估集則牽涉到下面的知識(shí)了。
因?yàn)樵趯?shí)際的訓(xùn)練中,訓(xùn)練的結(jié)果對(duì)于訓(xùn)練集的擬合程度通常還是挺好的(初始條件敏感),但是對(duì)于訓(xùn)練集之外的數(shù)據(jù)的擬合程度通常就不那么令人滿意了。因此我們通常并不會(huì)把所有的數(shù)據(jù)集都拿來(lái)訓(xùn)練,而是分出一部分來(lái)(這一部分不參加訓(xùn)練)對(duì)訓(xùn)練集生成的參數(shù)進(jìn)行測(cè)試,相對(duì)客觀的判斷這些參數(shù)對(duì)訓(xùn)練集之外的數(shù)據(jù)的符合程度。這種思想就稱為交叉驗(yàn)證(Cross Validation)
from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_absolute_error, make_scorer def log_transfer(func):def wrapper(y, yhat):result = func(np.log(y), np.nan_to_num(np.log(yhat)))return resultreturn wrapper scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error))) [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished使用線性回歸模型,對(duì)未處理標(biāo)簽的特征數(shù)據(jù)進(jìn)行五折交叉驗(yàn)證(Error 1.36)
print('AVG:', np.mean(scores)) AVG: 1.3641908155886227使用線性回歸模型,對(duì)處理過(guò)標(biāo)簽的特征數(shù)據(jù)進(jìn)行五折交叉驗(yàn)證(Error 0.19)
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error)) [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished print('AVG:', np.mean(scores)) AVG: 0.19382863663604424 scores = pd.DataFrame(scores.reshape(1,-1)) scores.columns = ['cv' + str(x) for x in range(1, 6)] scores.index = ['MAE'] scores| 0.191642 | 0.194986 | 0.192737 | 0.195329 | 0.19445 |
5.4.2 - 3 模擬真實(shí)業(yè)務(wù)情況
但在事實(shí)上,由于我們并不具有預(yù)知未來(lái)的能力,五折交叉驗(yàn)證在某些與時(shí)間相關(guān)的數(shù)據(jù)集上反而反映了不真實(shí)的情況。通過(guò)2018年的二手車價(jià)格預(yù)測(cè)2017年的二手車價(jià)格,這顯然是不合理的,因此我們還可以采用時(shí)間順序?qū)?shù)據(jù)集進(jìn)行分隔。在本例中,我們選用靠前時(shí)間的4/5樣本當(dāng)作訓(xùn)練集,靠后時(shí)間的1/5當(dāng)作驗(yàn)證集,最終結(jié)果與五折交叉驗(yàn)證差距不大
import datetime sample_feature = sample_feature.reset_index(drop=True) split_point = len(sample_feature) // 5 * 4 train = sample_feature.loc[:split_point].dropna() val = sample_feature.loc[split_point:].dropna()train_X = train[continuous_feature_names] train_y_ln = np.log(train['price'] + 1) val_X = val[continuous_feature_names] val_y_ln = np.log(val['price'] + 1) model = model.fit(train_X, train_y_ln) mean_absolute_error(val_y_ln, model.predict(val_X)) 0.194438583534908875.4.2 - 4 繪制學(xué)習(xí)率曲線與驗(yàn)證曲線
from sklearn.model_selection import learning_curve, validation_curve ? learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training example') plt.ylabel('score') train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error)) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid()#區(qū)域 plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label="Training score") plt.plot(train_sizes, test_scores_mean,'o-',color="g", label="Cross-validation score") plt.legend(loc="best") return plt plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1) <module 'matplotlib.pyplot' from 'C:\\ProgramData\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>5.4.3 多種模型對(duì)比
train = sample_feature[continuous_feature_names + ['price']].dropna()train_X = train[continuous_feature_names] train_y = train['price'] train_y_ln = np.log(train_y + 1)5.4.3 - 1 線性模型 & 嵌入式特征選擇
本章節(jié)默認(rèn),學(xué)習(xí)者已經(jīng)了解關(guān)于過(guò)擬合、模型復(fù)雜度、正則化等概念。否則請(qǐng)尋找相關(guān)資料或參考如下連接:
- 用簡(jiǎn)單易懂的語(yǔ)言描述「過(guò)擬合 overfitting」? https://www.zhihu.com/question/32246256/answer/55320482
- 模型復(fù)雜度與模型的泛化能力 http://yangyingming.com/article/434/
- 正則化的直觀理解 https://blog.csdn.net/jinping_shi/article/details/52433975
在過(guò)濾式和包裹式特征選擇方法中,特征選擇過(guò)程與學(xué)習(xí)器訓(xùn)練過(guò)程有明顯的分別。而嵌入式特征選擇在學(xué)習(xí)器訓(xùn)練過(guò)程中自動(dòng)地進(jìn)行特征選擇。嵌入式選擇最常用的是L1正則化與L2正則化。在對(duì)線性回歸模型加入兩種正則化方法后,他們分別變成了嶺回歸與Lasso回歸。
from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso models = [LinearRegression(),Ridge(),Lasso()] result = dict() for model in models:model_name = str(model).split('(')[0]scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))result[model_name] = scoresprint(model_name + ' is finished') LinearRegression is finished Ridge is finished Lasso is finished對(duì)三種方法的效果對(duì)比
result = pd.DataFrame(result) result.index = ['cv' + str(x) for x in range(1, 6)] result| 0.191642 | 0.195665 | 0.382708 |
| 0.194986 | 0.198841 | 0.383916 |
| 0.192737 | 0.196629 | 0.380754 |
| 0.195329 | 0.199255 | 0.385683 |
| 0.194450 | 0.198173 | 0.383555 |
L2正則化在擬合過(guò)程中通常都傾向于讓權(quán)值盡可能小,最后構(gòu)造一個(gè)所有參數(shù)都比較小的模型。因?yàn)橐话阏J(rèn)為參數(shù)值小的模型比較簡(jiǎn)單,能適應(yīng)不同的數(shù)據(jù)集,也在一定程度上避免了過(guò)擬合現(xiàn)象。可以設(shè)想一下對(duì)于一個(gè)線性回歸方程,若參數(shù)很大,那么只要數(shù)據(jù)偏移一點(diǎn)點(diǎn),就會(huì)對(duì)結(jié)果造成很大的影響;但如果參數(shù)足夠小,數(shù)據(jù)偏移得多一點(diǎn)也不會(huì)對(duì)結(jié)果造成什么影響,專業(yè)一點(diǎn)的說(shuō)法是『抗擾動(dòng)能力強(qiáng)』
model = Ridge().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names) intercept:5.901527844424091<matplotlib.axes._subplots.AxesSubplot at 0x1fea9056860>L1正則化有助于生成一個(gè)稀疏權(quán)值矩陣,進(jìn)而可以用于特征選擇。如下圖,我們發(fā)現(xiàn)power與userd_time特征非常重要。
model = Lasso().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names) intercept:8.674427764003347<matplotlib.axes._subplots.AxesSubplot at 0x1fea90b69b0>除此之外,決策樹通過(guò)信息熵或GINI指數(shù)選擇分裂節(jié)點(diǎn)時(shí),優(yōu)先選擇的分裂特征也更加重要,這同樣是一種特征選擇的方法。XGBoost與LightGBM模型中的model_importance指標(biāo)正是基于此計(jì)算的
5.4.3 - 2 非線性模型
除了線性模型以外,還有許多我們常用的非線性模型如下,在此篇幅有限不再一一講解原理。我們選擇了部分常用模型與線性模型進(jìn)行效果比對(duì)。
from sklearn.linear_model import LinearRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from xgboost.sklearn import XGBRegressor from lightgbm.sklearn import LGBMRegressor models = [LinearRegression(),DecisionTreeRegressor(),RandomForestRegressor(),GradientBoostingRegressor(),MLPRegressor(solver='lbfgs', max_iter=100), XGBRegressor(n_estimators = 100, objective='reg:squarederror'), LGBMRegressor(n_estimators = 100)] result = dict() for model in models:model_name = str(model).split('(')[0]scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))result[model_name] = scoresprint(model_name + ' is finished') LinearRegression is finished DecisionTreeRegressor is finished RandomForestRegressor is finished GradientBoostingRegressor is finished MLPRegressor is finished XGBRegressor is finished LGBMRegressor is finished result = pd.DataFrame(result) result.index = ['cv' + str(x) for x in range(1, 6)] result| 0.191642 | 0.184566 | 0.136266 | 0.168626 | 124.299426 | 0.168698 | 0.141159 |
| 0.194986 | 0.187029 | 0.139693 | 0.171905 | 257.886236 | 0.172258 | 0.143363 |
| 0.192737 | 0.184839 | 0.136871 | 0.169553 | 236.829589 | 0.168604 | 0.142137 |
| 0.195329 | 0.182605 | 0.138689 | 0.172299 | 130.197264 | 0.172474 | 0.143461 |
| 0.194450 | 0.186626 | 0.137420 | 0.171206 | 268.090236 | 0.170898 | 0.141921 |
可以看到隨機(jī)森林模型在每一個(gè)fold中均取得了更好的效果
5.4.4 模型調(diào)參
在此我們介紹了三種常用的調(diào)參方法如下:
- 貪心算法 https://www.jianshu.com/p/ab89df9759c8
- 網(wǎng)格調(diào)參 https://blog.csdn.net/weixin_43172660/article/details/83032029
- 貝葉斯調(diào)參 https://blog.csdn.net/linxid/article/details/81189154
5.4.4 - 1 貪心調(diào)參
best_obj = dict() for obj in objective:model = LGBMRegressor(objective=obj)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_obj[obj] = scorebest_leaves = dict() for leaves in num_leaves:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_leaves[leaves] = scorebest_depth = dict() for depth in max_depth:model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],max_depth=depth)score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))best_depth[depth] = score sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())]) <matplotlib.axes._subplots.AxesSubplot at 0x1fea93f6080>5.4.4 - 2 Grid Search 調(diào)參
from sklearn.model_selection import GridSearchCV parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth} model = LGBMRegressor() clf = GridSearchCV(model, parameters, cv=5) clf = clf.fit(train_X, train_y) clf.best_params_ {'max_depth': 15, 'num_leaves': 55, 'objective': 'regression'} model = LGBMRegressor(objective='regression',num_leaves=55,max_depth=15) np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) 0.136261644792433025.4.4 - 3 貝葉斯調(diào)參
from bayes_opt import BayesianOptimization def rf_cv(num_leaves, max_depth, subsample, min_child_samples):val = cross_val_score(LGBMRegressor(objective = 'regression_l1',num_leaves=int(num_leaves),max_depth=int(max_depth),subsample = subsample,min_child_samples = int(min_child_samples)),X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)).mean()return 1 - val rf_bo = BayesianOptimization(rf_cv,{'num_leaves': (2, 100),'max_depth': (2, 100),'subsample': (0.1, 1),'min_child_samples' : (2, 100)} ) rf_bo.maximize() | iter | target | max_depth | min_ch... | num_le... | subsample | ------------------------------------------------------------------------- | [0m 1 [0m | [0m 0.8649 [0m | [0m 89.57 [0m | [0m 47.3 [0m | [0m 55.13 [0m | [0m 0.1792 [0m | | [0m 2 [0m | [0m 0.8477 [0m | [0m 99.86 [0m | [0m 60.91 [0m | [0m 15.35 [0m | [0m 0.4716 [0m | | [95m 3 [0m | [95m 0.8698 [0m | [95m 81.74 [0m | [95m 83.32 [0m | [95m 92.59 [0m | [95m 0.9559 [0m | | [0m 4 [0m | [0m 0.8627 [0m | [0m 90.2 [0m | [0m 8.754 [0m | [0m 43.34 [0m | [0m 0.7772 [0m | | [0m 5 [0m | [0m 0.8115 [0m | [0m 10.07 [0m | [0m 86.15 [0m | [0m 4.109 [0m | [0m 0.3416 [0m | | [95m 6 [0m | [95m 0.8701 [0m | [95m 99.15 [0m | [95m 9.158 [0m | [95m 99.47 [0m | [95m 0.494 [0m | | [0m 7 [0m | [0m 0.806 [0m | [0m 2.166 [0m | [0m 2.416 [0m | [0m 97.7 [0m | [0m 0.224 [0m | | [0m 8 [0m | [0m 0.8701 [0m | [0m 98.57 [0m | [0m 97.67 [0m | [0m 99.87 [0m | [0m 0.3703 [0m | | [95m 9 [0m | [95m 0.8703 [0m | [95m 99.87 [0m | [95m 43.03 [0m | [95m 99.72 [0m | [95m 0.9749 [0m | | [0m 10 [0m | [0m 0.869 [0m | [0m 10.31 [0m | [0m 99.63 [0m | [0m 99.34 [0m | [0m 0.2517 [0m | | [95m 11 [0m | [95m 0.8703 [0m | [95m 52.27 [0m | [95m 99.56 [0m | [95m 98.97 [0m | [95m 0.9641 [0m | | [0m 12 [0m | [0m 0.8669 [0m | [0m 99.89 [0m | [0m 8.846 [0m | [0m 66.49 [0m | [0m 0.1437 [0m | | [0m 13 [0m | [0m 0.8702 [0m | [0m 68.13 [0m | [0m 75.28 [0m | [0m 98.71 [0m | [0m 0.153 [0m | | [0m 14 [0m | [0m 0.8695 [0m | [0m 84.13 [0m | [0m 86.48 [0m | [0m 91.9 [0m | [0m 0.7949 [0m | | [0m 15 [0m | [0m 0.8702 [0m | [0m 98.09 [0m | [0m 59.2 [0m | [0m 99.65 [0m | [0m 0.3275 [0m | | [0m 16 [0m | [0m 0.87 [0m | [0m 68.97 [0m | [0m 98.62 [0m | [0m 98.93 [0m | [0m 0.2221 [0m | | [0m 17 [0m | [0m 0.8702 [0m | [0m 99.85 [0m | [0m 63.74 [0m | [0m 99.63 [0m | [0m 0.4137 [0m | | [0m 18 [0m | [0m 0.8703 [0m | [0m 45.87 [0m | [0m 99.05 [0m | [0m 99.89 [0m | [0m 0.3238 [0m | | [0m 19 [0m | [0m 0.8702 [0m | [0m 79.65 [0m | [0m 46.91 [0m | [0m 98.61 [0m | [0m 0.8999 [0m | | [0m 20 [0m | [0m 0.8702 [0m | [0m 99.25 [0m | [0m 36.73 [0m | [0m 99.05 [0m | [0m 0.1262 [0m | | [0m 21 [0m | [0m 0.8702 [0m | [0m 85.51 [0m | [0m 85.34 [0m | [0m 99.77 [0m | [0m 0.8917 [0m | | [0m 22 [0m | [0m 0.8696 [0m | [0m 99.99 [0m | [0m 38.51 [0m | [0m 89.13 [0m | [0m 0.9884 [0m | | [0m 23 [0m | [0m 0.8701 [0m | [0m 63.29 [0m | [0m 97.93 [0m | [0m 99.94 [0m | [0m 0.9585 [0m | | [0m 24 [0m | [0m 0.8702 [0m | [0m 93.04 [0m | [0m 71.42 [0m | [0m 99.94 [0m | [0m 0.9646 [0m | | [0m 25 [0m | [0m 0.8701 [0m | [0m 99.73 [0m | [0m 16.21 [0m | [0m 99.38 [0m | [0m 0.9778 [0m | | [0m 26 [0m | [0m 0.87 [0m | [0m 86.28 [0m | [0m 58.1 [0m | [0m 99.47 [0m | [0m 0.107 [0m | | [0m 27 [0m | [0m 0.8703 [0m | [0m 47.28 [0m | [0m 99.83 [0m | [0m 99.65 [0m | [0m 0.4674 [0m | | [0m 28 [0m | [0m 0.8703 [0m | [0m 68.29 [0m | [0m 99.51 [0m | [0m 99.4 [0m | [0m 0.2757 [0m | | [0m 29 [0m | [0m 0.8701 [0m | [0m 76.49 [0m | [0m 73.41 [0m | [0m 99.86 [0m | [0m 0.9394 [0m | | [0m 30 [0m | [0m 0.8695 [0m | [0m 37.27 [0m | [0m 99.87 [0m | [0m 89.87 [0m | [0m 0.7588 [0m | ========================================================================= 1 - rf_bo.max['target'] 0.1296693644053145總結(jié)
在本章中,我們完成了建模與調(diào)參的工作,并對(duì)我們的模型進(jìn)行了驗(yàn)證。此外,我們還采用了一些基本方法來(lái)提高預(yù)測(cè)的精度,提升如下圖所示。
plt.figure(figsize=(13,5)) sns.lineplot(x=['0_origin','1_log_transfer','2_L1_&_L2','3_change_model','4_parameter_turning'], y=[1.36 ,0.19, 0.19, 0.14, 0.13]) <matplotlib.axes._subplots.AxesSubplot at 0x1feac73ceb8>總結(jié)
以上是生活随笔為你收集整理的【算法竞赛学习】二手车交易价格预测-Task4建模调参的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 【算法竞赛学习】二手车交易价格预测-Ta
- 下一篇: 【算法竞赛学习】二手车交易价格预测-Ta