日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > 数据库 >内容正文

数据库

mysql 基于时间分区_MySQL基于时间字段进行分区的方案总结

發布時間:2023/12/15 数据库 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 mysql 基于时间分区_MySQL基于时间字段进行分区的方案总结 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

MySQL支持的分區類型一共有四種:RANGE,LIST,HASH,KEY。其中,RANGE又可分為原生RANGE和RANGE COLUMNS,LIST分為原生LIST和LIST COLUMNS,HASH分為原生HASH和LINEAR HASH,KEY包含原生KEY和LINEAR HASH。關于這些分區之間的差別,改日另寫文章進行闡述。

最近,碰到一個需求,要對表的時間字段(類型:datetime)基于天進行分區。于是遍歷MySQL官方文檔分區章節,總結如下:

實現方式

主要是以下幾種:

1. 基于RANGE

2. 基于RANGE COLUMNS

3. 基于HASH

測試數據

為了測試以上三種方案,特構造了100萬的測試數據,放在test表中,test表只有兩列:id和hiredate,其中hiredate只包含10天的數據,從2015-12-01到2015-12-10。具體信息如下:

mysql> show create table testG

*************************** 1. row ***************************

Table: test

Create Table: CREATE TABLE `test` (

`id` int(11) DEFAULT NULL,

`hiredate` datetime DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1

1 row in set (0.00 sec)

mysql> select min(hiredate),max(hiredate) from test;

+---------------------+---------------------+

| min(hiredate) | max(hiredate) |

+---------------------+---------------------+

| 2015-12-01 00:00:00 | 2015-12-10 23:59:56 |

+---------------------+---------------------+

1 row in set (0.44 sec)

mysql> select date(hiredate),count(*) from test group by date(hiredate);

+----------------+----------+

| date(hiredate) | count(*) |

+----------------+----------+

| 2015-12-01 | 99963 |

| 2015-12-02 | 100032 |

| 2015-12-03 | 100150 |

| 2015-12-04 | 99989 |

| 2015-12-05 | 99908 |

| 2015-12-06 | 99897 |

| 2015-12-07 | 100137 |

| 2015-12-08 | 100171 |

| 2015-12-09 | 99851 |

| 2015-12-10 | 99902 |

+----------------+----------+

10 rows in set (0.98 sec)

測試的維度

測試的維度主要從兩個方面進行,

一、分區剪裁

針對特定的查詢,是否能進行分區剪裁(即只查詢相關的分區,而不是所有分區)

二、查詢時間

鑒于該批測試數據是靜止的(即沒有并發進行的insert,update和delete操作),數據量也不太大,從這個維度來考量貌似意義也不是很大。

因此,重點測試第一個維度。

基于RANGE的分區方案

在這里,選用了TO_DAYS函數

CREATE TABLE range_datetime(

id INT,

hiredate DATETIME

)

PARTITION BY RANGE (TO_DAYS(hiredate) ) (

PARTITION p1 VALUES LESS THAN ( TO_DAYS('20151202') ),

PARTITION p2 VALUES LESS THAN ( TO_DAYS('20151203') ),

PARTITION p3 VALUES LESS THAN ( TO_DAYS('20151204') ),

PARTITION p4 VALUES LESS THAN ( TO_DAYS('20151205') ),

PARTITION p5 VALUES LESS THAN ( TO_DAYS('20151206') ),

PARTITION p6 VALUES LESS THAN ( TO_DAYS('20151207') ),

PARTITION p7 VALUES LESS THAN ( TO_DAYS('20151208') ),

PARTITION p8 VALUES LESS THAN ( TO_DAYS('20151209') ),

PARTITION p9 VALUES LESS THAN ( TO_DAYS('20151210') ),

PARTITION p10 VALUES LESS THAN ( TO_DAYS('20151211') )

);

插入數據并查看特定查詢的執行計劃

mysql> insert into range_datetime select * from test;

Query OK, 1000000 rows affected (8.15 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from range_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| 1 | SIMPLE | range_datetime | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400061 | Using where |

+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+

1 row in set (0.03 sec)

注意執行計劃中的partitions的內容,只查詢了p7,p8,p9,p10三個分區,由此來看,使用to_days函數確實可以實現分區裁剪。

基于RANGE COLUMNS的分區方案

RANGE COLUMNS可以直接基于列,而無需像上述RANGE那種,分區的對象只能為整數。

創表語句如下:

CREATE TABLE range_columns (

id INT,

hiredate DATETIME

)

PARTITION BY RANGE COLUMNS(hiredate) (

PARTITION p1 VALUES LESS THAN ( '20151202' ),

PARTITION p2 VALUES LESS THAN ( '20151203' ),

PARTITION p3 VALUES LESS THAN ( '20151204' ),

PARTITION p4 VALUES LESS THAN ( '20151205' ),

PARTITION p5 VALUES LESS THAN ( '20151206' ),

PARTITION p6 VALUES LESS THAN ( '20151207' ),

PARTITION p7 VALUES LESS THAN ( '20151208' ),

PARTITION p8 VALUES LESS THAN ( '20151209' ),

PARTITION p9 VALUES LESS THAN ( '20151210' ),

PARTITION p10 VALUES LESS THAN ('20151211' )

);

插入數據并查看上述查詢的執行計劃

mysql> insert into range_columns select * from test;

Query OK, 1000000 rows affected (9.20 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from range_columns where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+

| 1 | SIMPLE | range_columns | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400210 | Using where |

+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+

1 row in set (0.11 sec)

同樣,使用該分區方案也實現了分區剪裁。

基于HASH的分區方案

因HASH分區對象同樣只能為整數,所以我們無法像上述RANGE COLUMNS那種直接引用列,在這里,同樣用了TO_DAYS函數進行轉換。

創表語句如下:

CREATE TABLE hash_datetime (

id INT,

hiredate DATETIME

)

PARTITION BY HASH( TO_DAYS(hiredate) )

PARTITIONS 10;

插入數據并查看上述查詢的執行計劃

mysql> insert into hash_datetime select * from test;

Query OK, 1000000 rows affected (9.43 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from hash_datetime where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+

| 1 | SIMPLE | hash_datetime | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | ALL | NULL | NULL | NULL | NULL | 1000500 | Using where |

+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+

1 row in set (0.00 sec)

不難看出,使用hash分區并不能有效的實現分區裁剪,至少在本例,基于天的需求中如此。

以上三種方案都是基于datetime的,那么,對于timestamp類型,又該如何選擇呢?

事實上,MySQL提供了一種基于UNIX_TIMESTAMP函數的RANGE分區方案,而且,只能使用UNIX_TIMESTAMP函數,如果使用其它函數,譬如to_days,會報如下錯誤:“ERROR 1486 (HY000): Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed”。

而且官方文檔中也提到“Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)”。

下面來測試一下基于UNIX_TIMESTAMP函數的RANGE分區方案,看其能否實現分區裁剪。

針對TIMESTAMP的分區方案

創表語句如下:

CREATE TABLE range_timestamp (

id INT,

hiredate TIMESTAMP

)

PARTITION BY RANGE ( UNIX_TIMESTAMP(hiredate) ) (

PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-02 00:00:00') ),

PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-03 00:00:00') ),

PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-04 00:00:00') ),

PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-05 00:00:00') ),

PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-06 00:00:00') ),

PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-07 00:00:00') ),

PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-08 00:00:00') ),

PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-09 00:00:00') ),

PARTITION p9 VALUES LESS THAN ( UNIX_TIMESTAMP('2015-12-10 00:00:00') ),

PARTITION p10 VALUES LESS THAN (UNIX_TIMESTAMP('2015-12-11 00:00:00') )

);

插入數據并查看上述查詢的執行計劃

mysql> insert into range_timestamp select * from test;

Query OK, 1000000 rows affected (13.25 sec)

Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from range_timestamp where hiredate >= '20151207124503' and hiredate<='20151210111230';

+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+

| 1 | SIMPLE | range_timestamp | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400448 | Using where |

+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+

1 row in set (0.00 sec)

同樣也能實現分區裁剪。

總結:

1. 經過對比,個人傾向于第二種方案,即基于RANGE COLUMNS的分區實現。

2. 在5.7版本之前,對于DATA和DATETIME類型的列,如果要實現分區裁剪,只能使用YEAR() 和TO_DAYS()函數,在5.7版本中,又新增了TO_SECONDS()函數。

3. 其實LIST也能實現基于天的分區方案,但在這個需求上,相比于RANGE,還是顯得很雞肋。

4. TIMESTAMP類型的列,只能基于UNIX_TIMESTAMP函數進行分區,切記!

總結

以上是生活随笔為你收集整理的mysql 基于时间分区_MySQL基于时间字段进行分区的方案总结的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。