日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

支持向量机SVM(Support Vector Machines)介绍

發布時間:2023/12/15 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 支持向量机SVM(Support Vector Machines)介绍 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

支持向量機SVM是從線性可分情況下的最優分類面提出的。所謂最優分類,就是要求分類線不但能夠將兩類無錯誤的分開,而且兩類之間的分類間隔最大,前者是保證經驗風險最小(為0),而通過后面的討論我們看到,使分類間隔最大實際上就是使得推廣性中的置信范圍最小。推廣到高維空間,最優分類線就成為最優分類面。

??? 支持向量機是利用分類間隔的思想進行訓練的,它依賴于對數據的預處理,即,在更高維的空間表達原始模式。通過適當的到一個足夠高維的非線性映射,分別屬于兩類的原始數據就能夠被一個超平面來分隔。如下圖所示:

????????

?

空心點和實心點分別代表兩個不同的類,H為將兩類沒有錯誤的區分開的分類面,同時,它也是一個最優的分類面。原因正如前面所述,當以H為分類面時,分類間隔最大,誤差最小。而這里的之間的距離margin就是兩類之間的分類間隔。支持向量機將數據從原始空間映射到高維空間的目的就是找到一個最優的分類面從而使得分類間隔margin最大。而那些定義最優分類超平面的訓練樣本,也就是上圖中過的空心點和實心點,就是支持向量機理論中所說的支持向量。顯然,所謂支持向量其實就是最難被分類的那些向量,然而,從另一個角度來看,它們同時也是對求解分類任務最有價值的模式。

? ? 支持向量機的基本思想可以概括為:首先通過非線性變換將輸入空間變換到一個高維空間,然后在這個新空間中求取最優線性分類面,而這種非線性變換是通過定義適當的內積函數來實現的。支持向量機求得的分類函數形式上類似于一個神經網絡,其輸出是若干中間層節點的線性組合,而每一個中間層節點對應于輸入樣本與一個支持向量的內積,因此也被叫做支持向量網絡。如下圖所示:

?

?

由于最終的判別函數中實際只包含于支持向量的內積和求和,因此判別分類的計算復雜度取決于支持向量的個數。

不難發現,支持向量機作為統計學習理論中的經典代表使用了與傳統方法完全不同的思路,即不是像傳統方法那樣首先試圖將原輸入空間降維(即特征選擇和特征變換),而是設法將輸入空間升維,以求在高維空間中問題變得線性可分或接近線性可分。因為升維知識改變了內積運算,并沒有使得算法的復雜性隨著維數的增加而增加,而且在高維空間中的推廣能力并不受到維數的影響。???????

??? 另外,需要說明的是,支持向量機采用不同的內積函數,將導致不同的支持向量機算法

目前得到研究的內積函數主要有以下三類:

(1)采用多項式形式的內積函數;

(2)采用核函數形式的內積函數;

??? (3)采用S形函數作為內積函數;

總結

以上是生活随笔為你收集整理的支持向量机SVM(Support Vector Machines)介绍的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。