日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

java setlt;intgt;_java使用Nagao算法实现新词发现、热门词的挖掘

發(fā)布時間:2023/12/15 编程问答 37 豆豆
生活随笔 收集整理的這篇文章主要介紹了 java setlt;intgt;_java使用Nagao算法实现新词发现、热门词的挖掘 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

采用Nagao算法統(tǒng)計各個子字符串的頻次,然后基于這些頻次統(tǒng)計每個字符串的詞頻、左右鄰個數(shù)、左右熵、交互信息(內(nèi)部凝聚度)。

名詞解釋:

Nagao算法:一種快速的統(tǒng)計文本里所有子字符串頻次的算法。詳細算法可見http://www.doc88.com/p-664123446503.html

詞頻:該字符串在文檔中出現(xiàn)的次數(shù)。出現(xiàn)次數(shù)越多越重要。

左右鄰個數(shù):文檔中該字符串的左邊和右邊出現(xiàn)的不同的字的個數(shù)。左右鄰越多,說明字符串成詞概率越高。

左右熵:文檔中該字符串的左邊和右邊出現(xiàn)的不同的字的數(shù)量分布的熵。類似上面的指標,有一定區(qū)別。

交互信息:每次將某字符串分成兩部分,左半部分字符串和右半部分字符串,計算其同時出現(xiàn)的概率除于其各自獨立出現(xiàn)的概率,最后取所有的劃分里面概率最小值。這個值越大,說明字符串內(nèi)部凝聚度越高,越可能成詞。

算法具體流程:

1.? 將輸入文件逐行讀入,按照非漢字([^\u4E00-\u9FA5]+)以及停詞“的很了么呢是嘛個都也比還這于不與才上用就好在和對挺去后沒說”,

分成一個個字符串,代碼如下:

String[] phrases = line.split("[^\u4E00-\u9FA5]+|["+stopwords+"]");

停用詞可以修改。

2.? 獲取所有切分后的字符串的左子串和右子串,分別加入左、右PTable

3.? 對PTable排序,并計算LTable。LTable記錄的是,排序后的PTable中,下一個子串同上一個子串具有相同字符的數(shù)量

4.? 遍歷PTable和LTable,即可得到所有子字符串的詞頻、左右鄰

5.? 根據(jù)所有子字符串的詞頻、左右鄰結(jié)果,輸出字符串的詞頻、左右鄰個數(shù)、左右熵、交互信息

1.? NagaoAlgorithm.java

package com.algo.word;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.HashMap;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import java.util.Set;

public class NagaoAlgorithm {

private int N;

private List leftPTable;

private int[] leftLTable;

private List rightPTable;

private int[] rightLTable;

private double wordNumber;

private Map wordTFNeighbor;

private final static String stopwords = "的很了么呢是嘛個都也比還這于不與才上用就好在和對挺去后沒說";

private NagaoAlgorithm(){

//default N = 5

N = 5;

leftPTable = new ArrayList();

rightPTable = new ArrayList();

wordTFNeighbor = new HashMap();

}

//reverse phrase

private String reverse(String phrase) {

StringBuilder reversePhrase = new StringBuilder();

for (int i = phrase.length() - 1; i >= 0; i--)

reversePhrase.append(phrase.charAt(i));

return reversePhrase.toString();

}

//co-prefix length of s1 and s2

private int coPrefixLength(String s1, String s2){

int coPrefixLength = 0;

for(int i = 0; i < Math.min(s1.length(), s2.length()); i++){

if(s1.charAt(i) == s2.charAt(i)) coPrefixLength++;

else break;

}

return coPrefixLength;

}

//add substring of line to pTable

private void addToPTable(String line){

//split line according to consecutive none Chinese character

String[] phrases = line.split("[^\u4E00-\u9FA5]+|["+stopwords+"]");

for(String phrase : phrases){

for(int i = 0; i < phrase.length(); i++)

rightPTable.add(phrase.substring(i));

String reversePhrase = reverse(phrase);

for(int i = 0; i < reversePhrase.length(); i++)

leftPTable.add(reversePhrase.substring(i));

wordNumber += phrase.length();

}

}

//count lTable

private void countLTable(){

Collections.sort(rightPTable);

rightLTable = new int[rightPTable.size()];

for(int i = 1; i < rightPTable.size(); i++)

rightLTable[i] = coPrefixLength(rightPTable.get(i-1), rightPTable.get(i));

Collections.sort(leftPTable);

leftLTable = new int[leftPTable.size()];

for(int i = 1; i < leftPTable.size(); i++)

leftLTable[i] = coPrefixLength(leftPTable.get(i-1), leftPTable.get(i));

System.out.println("Info: [Nagao Algorithm Step 2]: having sorted PTable and counted left and right LTable");

}

//according to pTable and lTable, count statistical result: TF, neighbor distribution

private void countTFNeighbor(){

//get TF and right neighbor

for(int pIndex = 0; pIndex < rightPTable.size(); pIndex++){

String phrase = rightPTable.get(pIndex);

for(int length = 1 + rightLTable[pIndex]; length <= N && length <= phrase.length(); length++){

String word = phrase.substring(0, length);

TFNeighbor tfNeighbor = new TFNeighbor();

tfNeighbor.incrementTF();

if(phrase.length() > length)

tfNeighbor.addToRightNeighbor(phrase.charAt(length));

for(int lIndex = pIndex+1; lIndex < rightLTable.length; lIndex++){

if(rightLTable[lIndex] >= length){

tfNeighbor.incrementTF();

String coPhrase = rightPTable.get(lIndex);

if(coPhrase.length() > length)

tfNeighbor.addToRightNeighbor(coPhrase.charAt(length));

}

else break;

}

wordTFNeighbor.put(word, tfNeighbor);

}

}

//get left neighbor

for(int pIndex = 0; pIndex < leftPTable.size(); pIndex++){

String phrase = leftPTable.get(pIndex);

for(int length = 1 + leftLTable[pIndex]; length <= N && length <= phrase.length(); length++){

String word = reverse(phrase.substring(0, length));

TFNeighbor tfNeighbor = wordTFNeighbor.get(word);

if(phrase.length() > length)

tfNeighbor.addToLeftNeighbor(phrase.charAt(length));

for(int lIndex = pIndex + 1; lIndex < leftLTable.length; lIndex++){

if(leftLTable[lIndex] >= length){

String coPhrase = leftPTable.get(lIndex);

if(coPhrase.length() > length)

tfNeighbor.addToLeftNeighbor(coPhrase.charAt(length));

}

else break;

}

}

}

System.out.println("Info: [Nagao Algorithm Step 3]: having counted TF and Neighbor");

}

//according to wordTFNeighbor, count MI of word

private double countMI(String word){

if(word.length() <= 1) return 0;

double coProbability = wordTFNeighbor.get(word).getTF()/wordNumber;

List mi = new ArrayList(word.length());

for(int pos = 1; pos < word.length(); pos++){

String leftPart = word.substring(0, pos);

String rightPart = word.substring(pos);

double leftProbability = wordTFNeighbor.get(leftPart).getTF()/wordNumber;

double rightProbability = wordTFNeighbor.get(rightPart).getTF()/wordNumber;

mi.add(coProbability/(leftProbability*rightProbability));

}

return Collections.min(mi);

}

//save TF, (left and right) neighbor number, neighbor entropy, mutual information

private void saveTFNeighborInfoMI(String out, String stopList, String[] threshold){

try {

//read stop words file

Set stopWords = new HashSet();

BufferedReader br = new BufferedReader(new FileReader(stopList));

String line;

while((line = br.readLine()) != null){

if(line.length() > 1)

stopWords.add(line);

}

br.close();

//output words TF, neighbor info, MI

BufferedWriter bw = new BufferedWriter(new FileWriter(out));

for(Map.Entry entry : wordTFNeighbor.entrySet()){

if( entry.getKey().length() <= 1 || stopWords.contains(entry.getKey()) ) continue;

TFNeighbor tfNeighbor = entry.getValue();

int tf, leftNeighborNumber, rightNeighborNumber;

double mi;

tf = tfNeighbor.getTF();

leftNeighborNumber = tfNeighbor.getLeftNeighborNumber();

rightNeighborNumber = tfNeighbor.getRightNeighborNumber();

mi = countMI(entry.getKey());

if(tf > Integer.parseInt(threshold[0]) && leftNeighborNumber > Integer.parseInt(threshold[1]) &&

rightNeighborNumber > Integer.parseInt(threshold[2]) && mi > Integer.parseInt(threshold[3]) ){

StringBuilder sb = new StringBuilder();

sb.append(entry.getKey());

sb.append(",").append(tf);

sb.append(",").append(leftNeighborNumber);

sb.append(",").append(rightNeighborNumber);

sb.append(",").append(tfNeighbor.getLeftNeighborEntropy());

sb.append(",").append(tfNeighbor.getRightNeighborEntropy());

sb.append(",").append(mi).append("\n");

bw.write(sb.toString());

}

}

bw.close();

} catch (IOException e) {

throw new RuntimeException(e);

}

System.out.println("Info: [Nagao Algorithm Step 4]: having saved to file");

}

//apply nagao algorithm to input file

public static void applyNagao(String[] inputs, String out, String stopList){

NagaoAlgorithm nagao = new NagaoAlgorithm();

//step 1: add phrases to PTable

String line;

for(String in : inputs){

try {

BufferedReader br = new BufferedReader(new FileReader(in));

while((line = br.readLine()) != null){

nagao.addToPTable(line);

}

br.close();

} catch (IOException e) {

throw new RuntimeException();

}

}

System.out.println("Info: [Nagao Algorithm Step 1]: having added all left and right substrings to PTable");

//step 2: sort PTable and count LTable

nagao.countLTable();

//step3: count TF and Neighbor

nagao.countTFNeighbor();

//step4: save TF NeighborInfo and MI

nagao.saveTFNeighborInfoMI(out, stopList, "20,3,3,5".split(","));

}

public static void applyNagao(String[] inputs, String out, String stopList, int n, String filter){

NagaoAlgorithm nagao = new NagaoAlgorithm();

nagao.setN(n);

String[] threshold = filter.split(",");

if(threshold.length != 4){

System.out.println("ERROR: filter must have 4 numbers, seperated with ',' ");

return;

}

//step 1: add phrases to PTable

String line;

for(String in : inputs){

try {

BufferedReader br = new BufferedReader(new FileReader(in));

while((line = br.readLine()) != null){

nagao.addToPTable(line);

}

br.close();

} catch (IOException e) {

throw new RuntimeException();

}

}

System.out.println("Info: [Nagao Algorithm Step 1]: having added all left and right substrings to PTable");

//step 2: sort PTable and count LTable

nagao.countLTable();

//step3: count TF and Neighbor

nagao.countTFNeighbor();

//step4: save TF NeighborInfo and MI

nagao.saveTFNeighborInfoMI(out, stopList, threshold);

}

private void setN(int n){

N = n;

}

public static void main(String[] args) {

String[] ins = {"E://test//ganfen.txt"};

applyNagao(ins, "E://test//out.txt", "E://test//stoplist.txt");

}

}

2. TFNeighbor.java

package com.algo.word;

import java.util.HashMap;

import java.util.Map;

public class TFNeighbor {

private int tf;

private Map leftNeighbor;

private Map rightNeighbor;

TFNeighbor(){

leftNeighbor = new HashMap();

rightNeighbor = new HashMap();

}

//add word to leftNeighbor

public void addToLeftNeighbor(char word){

//leftNeighbor.put(word, 1 + leftNeighbor.getOrDefault(word, 0));

Integer number = leftNeighbor.get(word);

leftNeighbor.put(word, number == null? 1: 1+number);

}

//add word to rightNeighbor

public void addToRightNeighbor(char word){

//rightNeighbor.put(word, 1 + rightNeighbor.getOrDefault(word, 0));

Integer number = rightNeighbor.get(word);

rightNeighbor.put(word, number == null? 1: 1+number);

}

//increment tf

public void incrementTF(){

tf++;

}

public int getLeftNeighborNumber(){

return leftNeighbor.size();

}

public int getRightNeighborNumber(){

return rightNeighbor.size();

}

public double getLeftNeighborEntropy(){

double entropy = 0;

int sum = 0;

for(int number : leftNeighbor.values()){

entropy += number*Math.log(number);

sum += number;

}

if(sum == 0) return 0;

return Math.log(sum) - entropy/sum;

}

public double getRightNeighborEntropy(){

double entropy = 0;

int sum = 0;

for(int number : rightNeighbor.values()){

entropy += number*Math.log(number);

sum += number;

}

if(sum == 0) return 0;

return Math.log(sum) - entropy/sum;

}

public int getTF(){

return tf;

}

}

3. Main.java

package com.algo.word;

public class Main {

public static void main(String[] args) {

//if 3 arguments, first argument is input files splitting with ','

//second argument is output file

//output 7 columns split with ',' , like below:

//word, term frequency, left neighbor number, right neighbor number, left neighbor entropy, right neighbor entropy, mutual information

//third argument is stop words list

if(args.length == 3)

NagaoAlgorithm.applyNagao(args[0].split(","), args[1], args[2]);

//if 4 arguments, forth argument is the NGram parameter N

//5th argument is threshold of output words, default is "20,3,3,5"

//output TF > 20 && (left | right) neighbor number > 3 && MI > 5

else if(args.length == 5)

NagaoAlgorithm.applyNagao(args[0].split(","), args[1], args[2], Integer.parseInt(args[3]), args[4]);

}

}

以上所述就是本文的全部內(nèi)容了,希望大家能夠喜歡。

創(chuàng)作挑戰(zhàn)賽新人創(chuàng)作獎勵來咯,堅持創(chuàng)作打卡瓜分現(xiàn)金大獎

總結(jié)

以上是生活随笔為你收集整理的java setlt;intgt;_java使用Nagao算法实现新词发现、热门词的挖掘的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。