javascript
SpringBoot 如何进行限流?老鸟们都这么玩的!
大家好,我是飄渺。SpringBoot老鳥系列的文章已經寫了四篇,每篇的閱讀反響都還不錯,那今天繼續給大家帶來老鳥系列的第五篇,來聊聊在SpringBoot項目中如何對接口進行限流,有哪些常見的限流算法,如何優雅的進行限流(基于AOP)。
首先就讓我們來看看為什么需要對接口進行限流?
為什么要進行限流?
因為互聯網系統通常都要面對大并發大流量的請求,在突發情況下(最常見的場景就是秒殺、搶購),瞬時大流量會直接將系統打垮,無法對外提供服務。那為了防止出現這種情況最常見的解決方案之一就是限流,當請求達到一定的并發數或速率,就進行等待、排隊、降級、拒絕服務等。
例如,12306購票系統,在面對高并發的情況下,就是采用了限流。 在流量高峰期間經常會出現提示語;“當前排隊人數較多,請稍后再試!”
什么是限流?有哪些限流算法?
限流是對某一時間窗口內的請求數進行限制,保持系統的可用性和穩定性,防止因流量暴增而導致的系統運行緩慢或宕機。
常見的限流算法有三種:
1. 計數器限流
計數器限流算法是最為簡單粗暴的解決方案,主要用來限制總并發數,比如數據庫連接池大小、線程池大小、接口訪問并發數等都是使用計數器算法。
如:使用 AomicInteger 來進行統計當前正在并發執行的次數,如果超過域值就直接拒絕請求,提示系統繁忙。
2. 漏桶算法
漏桶算法思路很簡單,我們把水比作是請求,漏桶比作是系統處理能力極限,水先進入到漏桶里,漏桶里的水按一定速率流出,當流出的速率小于流入的速率時,由于漏桶容量有限,后續進入的水直接溢出(拒絕請求),以此實現限流。
3. 令牌桶算法
令牌桶算法的原理也比較簡單,我們可以理解成醫院的掛號看病,只有拿到號以后才可以進行診病。
系統會維護一個令牌(token)桶,以一個恒定的速度往桶里放入令牌(token),這時如果有請求進來想要被處理,則需要先從桶里獲取一個令牌(token),當桶里沒有令牌(token)可取時,則該請求將被拒絕服務。令牌桶算法通過控制桶的容量、發放令牌的速率,來達到對請求的限制。
基于Guava工具類實現限流
Google開源工具包Guava提供了限流工具類RateLimiter,該類基于令牌桶算法實現流量限制,使用十分方便,而且十分高效,實現步驟如下:
第一步:引入guava依賴包
<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.1-jre</version> </dependency>第二步:給接口加上限流邏輯
@Slf4j @RestController @RequestMapping("/limit") public class LimitController {/*** 限流策略 : 1秒鐘2個請求*/private final RateLimiter limiter = RateLimiter.create(2.0);private DateTimeFormatter dtf = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");@GetMapping("/test1")public String testLimiter() {//500毫秒內,沒拿到令牌,就直接進入服務降級boolean tryAcquire = limiter.tryAcquire(500, TimeUnit.MILLISECONDS);if (!tryAcquire) {log.warn("進入服務降級,時間{}", LocalDateTime.now().format(dtf));return "當前排隊人數較多,請稍后再試!";}log.info("獲取令牌成功,時間{}", LocalDateTime.now().format(dtf));return "請求成功";} }以上用到了RateLimiter的2個核心方法:create()、tryAcquire(),以下為詳細說明
- acquire() 獲取一個令牌, 改方法會阻塞直到獲取到這一個令牌, 返回值為獲取到這個令牌花費的時間
- acquire(int permits) 獲取指定數量的令牌, 該方法也會阻塞, 返回值為獲取到這 N 個令牌花費的時間
- tryAcquire() 判斷時候能獲取到令牌, 如果不能獲取立即返回 false
- tryAcquire(int permits) 獲取指定數量的令牌, 如果不能獲取立即返回 false
- tryAcquire(long timeout, TimeUnit unit) 判斷能否在指定時間內獲取到令牌, 如果不能獲取立即返回 false
- tryAcquire(int permits, long timeout, TimeUnit unit) 同上
第三步:體驗效果
通過訪問測試地址: http://127.0.0.1:8080/limit/test1,反復刷新并觀察后端日志
WARN LimitController:35 - 進入服務降級,時間2021-09-25 21:39:37 WARN LimitController:35 - 進入服務降級,時間2021-09-25 21:39:37 INFO LimitController:39 - 獲取令牌成功,時間2021-09-25 21:39:37 WARN LimitController:35 - 進入服務降級,時間2021-09-25 21:39:37 WARN LimitController:35 - 進入服務降級,時間2021-09-25 21:39:37 INFO LimitController:39 - 獲取令牌成功,時間2021-09-25 21:39:37WARN LimitController:35 - 進入服務降級,時間2021-09-25 21:39:38 INFO LimitController:39 - 獲取令牌成功,時間2021-09-25 21:39:38 WARN LimitController:35 - 進入服務降級,時間2021-09-25 21:39:38 INFO LimitController:39 - 獲取令牌成功,時間2021-09-25 21:39:38從以上日志可以看出,1秒鐘內只有2次成功,其他都失敗降級了,說明我們已經成功給接口加上了限流功能。
當然了,我們在實際開發中并不能直接這樣用。至于原因嘛,你想呀,你每個接口都需要手動給其加上tryAcquire(),業務代碼和限流代碼混在一起,而且明顯違背了DRY原則,代碼冗余,重復勞動。代碼評審時肯定會被老鳥們給嘲笑一番,啥破玩意兒!
所以,我們這里需要想辦法將其優化 - 借助自定義注解+AOP實現接口限流。
基于AOP實現接口限流
基于AOP的實現方式也非常簡單,實現過程如下:
第一步:加入AOP依賴
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-aop</artifactId> </dependency>第二步:自定義限流注解
@Retention(RetentionPolicy.RUNTIME) @Target({ElementType.METHOD}) @Documented public @interface Limit {/*** 資源的key,唯一* 作用:不同的接口,不同的流量控制*/String key() default "";/*** 最多的訪問限制次數*/double permitsPerSecond () ;/*** 獲取令牌最大等待時間*/long timeout();/*** 獲取令牌最大等待時間,單位(例:分鐘/秒/毫秒) 默認:毫秒*/TimeUnit timeunit() default TimeUnit.MILLISECONDS;/*** 得不到令牌的提示語*/String msg() default "系統繁忙,請稍后再試."; }第三步:使用AOP切面攔截限流注解
@Slf4j @Aspect @Component public class LimitAop {/*** 不同的接口,不同的流量控制* map的key為 Limiter.key*/private final Map<String, RateLimiter> limitMap = Maps.newConcurrentMap();@Around("@annotation(com.jianzh5.blog.limit.Limit)")public Object around(ProceedingJoinPoint joinPoint) throws Throwable{MethodSignature signature = (MethodSignature) joinPoint.getSignature();Method method = signature.getMethod();//拿limit的注解Limit limit = method.getAnnotation(Limit.class);if (limit != null) {//key作用:不同的接口,不同的流量控制String key=limit.key();RateLimiter rateLimiter = null;//驗證緩存是否有命中keyif (!limitMap.containsKey(key)) {// 創建令牌桶rateLimiter = RateLimiter.create(limit.permitsPerSecond());limitMap.put(key, rateLimiter);log.info("新建了令牌桶={},容量={}",key,limit.permitsPerSecond());}rateLimiter = limitMap.get(key);// 拿令牌boolean acquire = rateLimiter.tryAcquire(limit.timeout(), limit.timeunit());// 拿不到命令,直接返回異常提示if (!acquire) {log.debug("令牌桶={},獲取令牌失敗",key);this.responseFail(limit.msg());return null;}}return joinPoint.proceed();}/*** 直接向前端拋出異常* @param msg 提示信息*/private void responseFail(String msg) {HttpServletResponse response=((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getResponse();ResultData<Object> resultData = ResultData.fail(ReturnCode.LIMIT_ERROR.getCode(), msg);WebUtils.writeJson(response,resultData);} }第四步:給需要限流的接口加上注解
@Slf4j @RestController @RequestMapping("/limit") public class LimitController {@GetMapping("/test2")@Limit(key = "limit2", permitsPerSecond = 1, timeout = 500, timeunit = TimeUnit.MILLISECONDS,msg = "當前排隊人數較多,請稍后再試!")public String limit2() {log.info("令牌桶limit2獲取令牌成功");return "ok";}@GetMapping("/test3")@Limit(key = "limit3", permitsPerSecond = 2, timeout = 500, timeunit = TimeUnit.MILLISECONDS,msg = "系統繁忙,請稍后再試!")public String limit3() {log.info("令牌桶limit3獲取令牌成功");return "ok";} }第五步:體驗效果
通過訪問測試地址: http://127.0.0.1:8080/limit/test2,反復刷新并觀察輸出結果:
正常響應時:
{"status":100,"message":"操作成功","data":"ok","timestamp":1632579377104}觸發限流時:
{"status":2001,"message":"系統繁忙,請稍后再試!","data":null,"timestamp":1632579332177}通過觀察得之,基于自定義注解同樣實現了接口限流的效果。
小結
一般在系統上線時我們通過對系統壓測可以評估出系統的性能閥值,然后給接口加上合理的限流參數,防止出現大流量請求時直接壓垮系統。今天我們介紹了幾種常見的限流算法(重點關注令牌桶算法),基于Guava工具類實現了接口限流并利用AOP完成了對限流代碼的優化。
在完成優化后業務代碼和限流代碼解耦,開發人員只要一個注解,不用關心限流的實現邏輯,而且減少了代碼冗余大大提高了代碼可讀性,代碼評審時誰還能再笑話你?
好了,今天的文章到此就結束了,最后,我是飄渺Jam,一名寫代碼的架構師,做架構的程序員,期待您的轉發與關注,當然也歡迎通過下方二維碼添加我的個人微信,咱們一起聊技術!
老鳥系列源碼已經上傳至GitHub,需要的點擊下方卡片關注并回復關鍵字 0923 獲取
總結
以上是生活随笔為你收集整理的SpringBoot 如何进行限流?老鸟们都这么玩的!的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: thinksns java_社交系统Th
- 下一篇: JS_day03