日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

参考文献引用格式实例

發(fā)布時(shí)間:2023/12/14 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 参考文献引用格式实例 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
題名: PCA & HMM Based Arm Gesture Recognition Using Inertial Measurement Unit
作者: Zhang YL(張吟龍);?Liang W(梁煒);?Tan JD(談金東);?Li Y(李楊);?Zeng ZM(曾子銘)
作者部門: 工業(yè)控制網(wǎng)絡(luò)與系統(tǒng)研究室
會(huì)議名稱: 8th International Conference on Body Area Networks
會(huì)議日期: September 30 - October 2, 2013
會(huì)議地點(diǎn): Boston, MA, USA
會(huì)議錄: Proceedings of the 8th International Conference on Body Area Networks
會(huì)議錄出版者: ACM
會(huì)議錄出版地: Brussels, Belgium
出版日期: 2013
頁碼: 193-196
收錄類別: EI
EI收錄號(hào): 20144900293421
產(chǎn)權(quán)排序: 1
ISBN號(hào): 978-1-936968-89-3
關(guān)鍵詞: Principal Component Analysis?;?Hidden Markov Model?;?Arm Gesture Recognition?;?Inertial Measurement Unit
摘要: This paper presents a novel arm gesture recognition approach that is capable of recognizing seven commonly used sequential arm gestures based upon the outputs from Inertial Measurement Unit (IMU) integrated with 3-D accelerometer and 3-D gyroscope. Unlike the traditional gesture recognition methods where the states in the gesture sequence are irrelevant, our proposed recognition system is intentionally designed to recognize the meaningful gesture sequence where each gesture state relates to the contiguous states which is applicable in the specific occasions such as the police directing the traffic and the arm-injured patients performing a set of arm gestures for effective rehabilitation. In the proposed arm gesture recognition system, the waveforms of the inertial outputs, i.e., 3-D accelerations and 3-D angular rates are automatically segmented for each arm gesture trace at first. Then we employ the Principal Component Analysis (PCA) - a computationally efficient feature selection method characteristic of compressing the inertial data and minimizing the influences of gesture variations. These selected features from PCA are compared with those standard features stored in pattern templates to acquire the gesture observation sequence that satisfy the Markov property. Finally, the Hidden Markov Model is applied in deducing the most likely arm gesture sequence. The experimental results show that our arm gesture classifier achieves up to 93% accuracy. By comparing with the other published recognition methods, our approach verifies the robustness and feasibility in arm gesture recognition using wearable MEMS sensors.
語種: 英語
內(nèi)容類型: 會(huì)議論文
URI標(biāo)識(shí): http://ir.sia.cn/handle/173321/14581
專題: 工業(yè)控制網(wǎng)絡(luò)與系統(tǒng)研究室_會(huì)議論文

條目包含的文件?
文件名稱/大小 內(nèi)容類型 版本類型 開放類型 使用許可 ?
PCA & HMM Based Arm Gesture Recognition Using Inertial Measurement Unit.pdf(407KB) 會(huì)議論文 -- 開放獲取 CC BY-NC-SA 瀏覽?聯(lián)系獲取全文

推薦引用方式:
Zhang YL,Liang W,Tan JD,et al. PCA & HMM Based Arm Gesture Recognition Using Inertial Measurement Unit[C]. 8th International Conference on Body Area Networks. Boston, MA, USA. September 30 - October 2, 2013.PCA & HMM Based Arm Gesture Recognition Using Inertial Measurement Unit.

總結(jié)

以上是生活随笔為你收集整理的参考文献引用格式实例的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。