生活随笔
收集整理的這篇文章主要介紹了
基本积分公式表
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
基本積分公式表
∫kdx=kx+C  (k為常數)\int k dx = kx + C\;(k為常數)∫kdx=kx+C(k為常數)∫sin?xdx=?cos?x+C\int \sin x dx = -\cos x + C∫sinxdx=?cosx+C∫cos?xdx=sin?x+C\int \cos x dx = \sin x + C∫cosxdx=sinx+C∫xμdx=1μ+1xμ+1+C  (μ?=?1)\int x^ \mu dx = \frac1{\mu + 1} x^{ \mu + 1} + C \; (\mu \not= -1)∫xμdx=μ+11?xμ+1+C(μ??=?1)∫1cos?2xdx=∫sec?2xdx=tan?x+C\int \frac 1{ \cos^ 2x} dx = \int \sec^2 x dx = \tan x + C∫cos2x1?dx=∫sec2xdx=tanx+C∫1sin?2xdx=∫csc?2xdx=?cot?x+C\int \frac1{\sin^2x}dx = \int\csc^2xdx = - \cot x + C∫sin2x1?dx=∫csc2xdx=?cotx+C∫sec?xtan?xdx=sec?x+C\int \sec x \tan xdx = \sec x + C∫secxtanxdx=secx+C∫csc?xcot?xdx=?csc?x+C\int \csc x \cot xdx = - \csc x + C∫cscxcotxdx=?cscx+C∫axdx=1ln?aax+C  (a>0,a?=1)\int a^x dx = \frac 1{ \ln a} a^x + C \; ( a>0, a \not = 1)∫axdx=lna1?ax+C(a>0,a??=1)∫exdx=ex+C\int e^x dx = e^x + C∫exdx=ex+C∫1xdx=ln?∣x∣+C\int \frac 1x dx = \ln|x| + C∫x1?dx=ln∣x∣+C∫11?x2=arcsin?x+C=?arccos?x+C\int \frac1{ \sqrt{ 1-x^ 2} } = \arcsin x + C = - \arccos x + C∫1?x2?1?=arcsinx+C=?arccosx+C∫11+x2=arctan  x+C=?arccot  x+C\int \frac1{1+x^2} = arctan \; x + C = - arccot \; x + C∫1+x21?=arctanx+C=?arccotx+C∫sh?xdx=ch?x+C\int \sh xdx = \ch x + C∫shxdx=chx+C∫ch?xdx=sh?x+C\int \ch xdx = \sh x + C∫chxdx=shx+C∫tan?xdx=?ln?∣cos?x∣+C\int \tan xdx = - \ln | \cos x | + C∫tanxdx=?ln∣cosx∣+C∫cot?xdx=ln?∣sin?x∣+C\int \cot xdx = \ln | \sin x | + C∫cotxdx=ln∣sinx∣+C∫sec?xdx=ln?∣sec?x+tan?x∣+C\int \sec xdx = \ln | \sec x + \tan x | + C∫secxdx=ln∣secx+tanx∣+C∫csc?xdx=ln?∣csc?x?cot?x∣+C\int \csc xdx = \ln | \csc x - \cot x | + C∫cscxdx=ln∣cscx?cotx∣+C∫1a2+x2dx=1aarctan?xa+C\int \frac 1{ a^2 + x^2} dx = {\frac 1a} \arctan { \frac xa } + C∫a2+x21?dx=a1?arctanax?+C∫1x2?a2dx=12aln?∣x?ax+a∣+C\int \frac 1{ x^2 - a^2} dx = \frac 1{2a} \ln \left| \frac {x - a }{x + a} \right | + C∫x2?a21?dx=2a1?ln∣∣∣∣?x+ax?a?∣∣∣∣?+C∫1a2?x2dx=12aln?∣x+ax?a∣+C\int \frac 1{a^2 - x^2} dx = \frac 1{2a} \ln \left | \frac {x + a }{x - a } \right | + C∫a2?x21?dx=2a1?ln∣∣∣∣?x?ax+a?∣∣∣∣?+C∫1a2?x2dx=arcsin?xa+C\int \frac 1{ \sqrt {a^2 - x^2 } } dx = \arcsin \frac xa + C∫a2?x2?1?dx=arcsinax?+C∫1a2±x2dx=ln?∣x+x2±a2∣+C\int \frac 1{ \sqrt {a^2 \pm x^2}} dx = \ln \left | x + \sqrt { x^2 \pm a^2 } \right | + C∫a2±x2?1?dx=ln∣∣∣?x+x2±a2?∣∣∣?+C
總結
以上是生活随笔為你收集整理的基本积分公式表的全部內容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。