基本积分表
24個基本積分:
①∫kdx=kx+C\int k dx = kx + C∫kdx=kx+C
②∫xudx=xu+1u+1+C\int x^u dx = \frac{x^{u+1}}{u+1} + C∫xudx=u+1xu+1?+C
③∫1xdx=ln?∣x∣+C\int\frac{1}{x}dx = \ln|x| + C∫x1?dx=ln∣x∣+C
④∫11+x2dx=arctan?x+C=?arccotx+C\int \frac{1}{1+x^2}dx = \arctan x + C = -arccot x + C∫1+x21?dx=arctanx+C=?arccotx+C
⑤∫11?x2=arcsin?x+C=?arccos?x+C\int \frac{1}{\sqrt{1-x^2}} = \arcsin x +C = -\arccos x + C∫1?x2?1?=arcsinx+C=?arccosx+C
⑥∫cos?xdx=sin?x+C\int \cos xdx = \sin x +C∫cosxdx=sinx+C
⑦∫sin?xdx=?cos?x+C\int \sin xdx = -\cos x + C∫sinxdx=?cosx+C
⑧∫1cos2xdx=∫sec?2xdx=tan?x+C\int \frac{1}{cos^2x}dx = \int \sec^2 xdx = \tan x + C∫cos2x1?dx=∫sec2xdx=tanx+C
⑨∫1sin2xdx=∫csc?2xdx=?cot?x+C\int \frac{1}{sin^2x}dx = \int \csc^2 xdx = -\cot x + C∫sin2x1?dx=∫csc2xdx=?cotx+C
⑩∫sec?xtan?xdx=sec?x+C\int \sec x\tan xdx = \sec x + C∫secxtanxdx=secx+C
?∫csc?xcot?xdx=?csc?x+C\int \csc x\cot xdx = -\csc x + C∫cscxcotxdx=?cscx+C
?∫exdx=ex+C\int e^xdx = e^x + C∫exdx=ex+C
?∫axdx=axln?a+C\int a^xdx = \frac{a^x}{\ln a} + C∫axdx=lnaax?+C
?∫shxdx=chx+C\int sh xdx = chx + C∫shxdx=chx+C
?∫chxdx=shx+C\int ch xdx = shx + C∫chxdx=shx+C
?∫tan?xdx=?ln?∣cos?x∣+C\int \tan xdx = -\ln|\cos x| + C∫tanxdx=?ln∣cosx∣+C
?∫cot?xdx=ln?∣sin?x∣+C\int \cot xdx = \ln|\sin x| + C∫cotxdx=ln∣sinx∣+C
?∫sec?xdx=ln?∣sec?x+tan?x∣+C\int \sec xdx = \ln|\sec x + \tan x| + C∫secxdx=ln∣secx+tanx∣+C
?∫csc?xdx=ln?∣cscx?cot?x∣+C\int \csc xdx = \ln|csc x - \cot x| + C∫cscxdx=ln∣cscx?cotx∣+C
?∫1x2+a2dx=1aarctan?xa+C\int \frac{1}{x^2 + a^2}dx = \frac{1}{a}\arctan \frac{x}{a} + C∫x2+a21?dx=a1?arctanax?+C
?∫1x2?a2dx=12aln?∣x?ax+a∣+C\int \frac{1}{x^2 - a^2}dx = \frac{1}{2a}\ln|\frac{x - a}{x+a}| + C∫x2?a21?dx=2a1?ln∣x+ax?a?∣+C
?∫1a2?x2dx=arcsin?xa+C\int \frac{1}{\sqrt{a^2 - x^2}}dx = \arcsin \frac{x}{a} + C∫a2?x2?1?dx=arcsinax?+C
?∫1x2+a2dx=ln?(x+x2+a2)+C\int \frac{1}{\sqrt{x^2 + a^2}}dx = \ln(x + \sqrt{x^2 + a^2}) + C∫x2+a2?1?dx=ln(x+x2+a2?)+C
?∫1x2?a2dx=ln?∣x+x2?a2∣+C\int \frac{1}{\sqrt{x^2 - a^2}}dx = \ln|x + \sqrt{x^2 - a^2}| + C∫x2?a2?1?dx=ln∣x+x2?a2?∣+C
兩個由基本積分②推導(dǎo)的常用積分
①∫1xdx=2x+C\int \frac{1}{\sqrt{x}}dx = 2\sqrt{x} + C∫x?1?dx=2x?+C
②∫1x2dx=?1x+C\int \frac{1}{x^2}dx = -\frac{1}{x} + C∫x21?dx=?x1?+C
總結(jié)
- 上一篇: 微信终于出新功能了:自动登录该设备
- 下一篇: 思岚科技邀你2017日本东京国际机器人展