Eviews3种面板模型的选择-F检验操作详情
簡書同步鏈接Eviews3種面板模型的選擇-F檢驗操作詳情
之前有小伙伴問小編關于三種面板模型(不變系數、變截距、變系數)的選擇,具體如何操作,所以今天小編親自來實操咯。
今天看書又對這三種模型有了新的理解,所以趕緊分享記錄一下,以防被遺忘(這該死的記性)。
--------------------------------------我是美麗的分割線--------------------
先上模型
1、變系數模型
yi=αi+xiβi+ui,i=1,2,?,Ny_{i}=\alpha_{i} +x_{i}\beta_{i} +u_{i},i=1,2,\cdots ,Nyi?=αi?+xi?βi?+ui?,i=1,2,?,N
2、變截距模型
yi=αi+xiβ+ui,i=1,2,?,Ny_{i}=\alpha_{i} +x_{i}\beta +u_{i},i=1,2,\cdots ,Nyi?=αi?+xi?β+ui?,i=1,2,?,N
3、不變系數模型
yi=α+xiβ+ui,i=1,2,?,Ny_{i}=\alpha +x_{i}\beta +u_{i} , i=1,2,\cdots ,Nyi?=α+xi?β+ui?,i=1,2,?,N
對模型簡單粗暴的理解,變系數模型,系數變了,意味著結構變了,那截距項肯定也變啊(當然不排除截距項都相等的命運,這也太?巧了吧); 變截距模型,只有截距變,但是系數不變(讓所有個體系數不變,截距變允許吧?當然啊); 不變系數模型,要求最高,系數和截距都不變,但是不中用(因為讓所有個體結構一樣,截距也一樣,這樣做出來的模型實用性不高,條件太苛刻了)。
--------------------------------------我是美麗的分割線-----------------------------------------------
一、理論準備
模型屬于上述1、2、3上述哪種情形,需要進行協方差分析檢驗,主要檢驗為如下兩個假設:
H1:β1=β2=?=βN\beta _{1}=\beta _{2}=\cdots =\beta _{N}β1?=β2?=?=βN?
H2:α1=α2=?=αN,β1=β2=?=βN\alpha _{1}=\alpha _{2}=\cdots =\alpha _{N}, \beta _{1}=\beta _{2}=\cdots =\beta _{N}α1?=α2?=?=αN?,β1?=β2?=?=βN?
接受H2,則數據符合模型3,即不變系數模型;
拒絕H2,但接受H1,則數據符合模型2,即變截距模型;
拒絕H2,也拒絕H1,則數據符合模型1,即變系數模型。
二、數據準備
高鐵梅計量里的面板數據:1935-1954年美國5家企業的3個經濟變量(I 、K、 M)20年的觀測值。
2.1數據導入
這種數據格式如何導入Eviews,變成Eviews可操作的數據呢?
這里Eviews的數據格式和我們給的Excel的數據格式顯然不一樣,然后這里小編抖了一個機靈,把i_ch、i_ge、i_gm、i_us、……m_ch、m_Ge、m_us、m_we按組方式打開,然后把Excel里的數據復制過來,然后刪除組即可。打開數據以后就是下面這樣子了。
而且發現這個數據樣式跟小編之前寫的Eviews寫入面板數據②不一樣,所以今天又get到Eviews面板模型數據的另一種處理方式。
3、協方差分析檢驗
在假設 H2 下檢驗統計量 F2 服從相應自由度下的F分布。若計算所得到的統計量 F2 的值不小于給定置信度下的相應臨界值,則拒絕假設 H2,繼續檢驗假設 H1。反之,接受 H2則認為樣本數據符合不變系數模型。
在假設H1下檢驗統計量F1也服從相應自由度下的F分布,若計算所得到的統計量F1的值不小于給定置信度下的相應臨界值,則拒絕假設H1。如果接受H1,則認為樣本數據符合變截距模型,反之拒絕H1 ,則認為樣本數據符合變系數模型。
下面是(1)是中尋找殘差平方和時候的模型選擇的配置方式,也是今天小編的新發現。
好了,今天就到這兒了,祝大家學習愉快喔~
今天是我們孝義市歡迎援鄂醫療隊凱旋回歸的日子,他們都平安回來了,萬幸!
總結
以上是生活随笔為你收集整理的Eviews3种面板模型的选择-F检验操作详情的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 03-CSS样式表和选择器
- 下一篇: 【软考】软件设计师知识点整理(待更新)