日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

DH参数法 例题 机器人学

發布時間:2023/12/14 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 DH参数法 例题 机器人学 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
四、已知操作臂各連桿的連接方式,計算末端執行器的位姿,建議遵循DH方法的基本原則

Exp.1:如圖1所示為3-自由度的機械手,這三個關節都是轉動的。關節軸3垂直于關節軸1和關節軸2形成的平面。給出連桿坐標系的D-H參數,并推導出坐標系{3}到坐標系{1}的變換矩陣。

D-H 參數αi?1\alpha_{i-1}αi?1?ai?1a_{i-1}ai?1?did_{i}di?θi\theta_{i}θi?
1XXXθ1\theta_{1}θ1?
20a0a_{0}a0?0θ2\theta_{2}θ2?
3?90°-90^{\circ}?90°a1a_{1}a1?0θ3\theta_{3}θ3?

DH參數法的一般式:
21T=[10000cos?α1?sin?α100sin?α1cos?x100001][100a1010000100001][cos?θ2?sin?θ200sin?θ2cos?θ20000100001][10000100001d20001]{ }^{1}_{2} T=\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_{1} & -\sin \alpha_{1} & 0 \\ 0 & \sin \alpha_{1} & \cos x_{1} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{llll} 1 & 0 & 0 & a_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} \cos \theta_{2} & -\sin \theta_{2} & 0 & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{llll} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{array}\right] 21?T=?????1000?0cosα1?sinα1?0?0?sinα1?cosx1?0?0001???????????1000?0100?0010?a1?001???????????cosθ2?sinθ2?00??sinθ2?cosθ2?00?0010?0001???????????1000?0100?0010?00d2?1??????

=[cos?θ2?sin?θ20a1cos?α1sin?θ2cos?α1cos?θ2?sin?α1?d2sin?α1sin?α1sin?θ2sin?α1cos?θ2cos?α1d2cos?α10001]=\left[\begin{array}{cccc} \cos \theta_{2} & -\sin \theta_{2} & 0 & a_{1} \\ \cos \alpha_{1} \sin \theta_{2} & \cos \alpha_{1} \cos \theta_{2} & -\sin \alpha_{1} & -d_{2} \sin \alpha_{1} \\ \sin \alpha_{1} \sin \theta_{2} & \sin \alpha_{1} \cos \theta_{2} & \cos \alpha_{1} & d_{2} \cos \alpha_{1} \\ 0 & 0 & 0 & 1 \end{array}\right] =?????cosθ2?cosα1?sinθ2?sinα1?sinθ2?0??sinθ2?cosα1?cosθ2?sinα1?cosθ2?0?0?sinα1?cosα1?0?a1??d2?sinα1?d2?cosα1?1??????

代入參數α1=0,a1=a0,d2=0\alpha_{1}=0, a_{1}=a_{0}, d_{2}=0α1?=0,a1?=a0?,d2?=0
21T=[cos?θ2?sin?θ20a0sin?θ2cos?θ20000100001]{ }_{2}^{1} T=\left[\begin{array}{cccc} \cos \theta_{2} & -\sin \theta_{2} & 0 & a_{0} \\ \sin \theta_{2} & \cos \theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] 21?T=?????cosθ2?sinθ2?00??sinθ2?cosθ2?00?0010?a0?001??????
同理
32T=[cos?θ3?sin?θ30a2cos?α2sin?θ3cos?α2cos?θ3?sin?α2?d3sin?α2sin?α2sin?θ3sin?α2cos?θ3cos?α2d3cos?α20001]{}^{2}_{3} T=\left[\begin{array}{cccc} \cos \theta_{3} & -\sin \theta_{3} & 0 & a_{2} \\ \cos \alpha_{2} \sin \theta_{3} & \cos \alpha_{2} \cos \theta_{3} & -\sin \alpha_{2} & -d_{3} \sin \alpha_{2} \\ \sin \alpha_{2} \sin \theta_{3} & \sin \alpha_{2} \cos \theta_{3} & \cos \alpha_{2} & d_{3} \cos \alpha_{2} \\ 0 & 0 & 0 & 1 \end{array}\right] 32?T=?????cosθ3?cosα2?sinθ3?sinα2?sinθ3?0??sinθ3?cosα2?cosθ3?sinα2?cosθ3?0?0?sinα2?cosα2?0?a2??d3?sinα2?d3?cosα2?1??????

α2=?90°,a2=a1,d3=0\alpha_{2}=-90^{\circ}, \quad a_{2}=a_{1}, \quad d_{3}=0 α2?=?90°,a2?=a1?,d3?=0

32T=[cos?θ3?sin?θ30a10010?sin?θ3?cos?θ3000001]^{2}_{3} T=\left[\begin{array}{cccc} \cos \theta_{3} & -\sin \theta_{3} & 0 & a_{1} \\ 0 & 0 & 1 & 0 \\ -\sin \theta_{3} & -\cos \theta_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] 32?T=?????cosθ3?0?sinθ3?0??sinθ3?0?cosθ3?0?0100?a1?001??????

31T=21T32T=[cos?θ2?sin?θ20a0sin?θ2cos?θ20000100001][cos?θ3?sin?θ30a10010?sin?θ3?cos?θ3000001]^{1}_{3} T={}^{1}_{2}T_{3}^{2} T=\left[\begin{array}{cccc} \cos \theta_{2} & -\sin \theta_{2} & 0 & a_{0} \\ \sin \theta_{2} & \cos \theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{cccc} \cos \theta_{3} & -\sin \theta_{3} & 0 & a_{1} \\ 0 & 0 & 1 & 0 \\ -\sin \theta_{3} & -\cos \theta_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] 31?T=21?T32?T=?????cosθ2?sinθ2?00??sinθ2?cosθ2?00?0010?a0?001???????????cosθ3?0?sinθ3?0??sinθ3?0?cosθ3?0?0100?a1?001??????

=[cos?θ2cos?θ3?cos?θ2sin?θ3?sin?θ2a1cos?θ2+a0sin?θ2cos?θ3?sin?θ2sin?θ3cos?θ2a1sin?θ2?sin?θ3?cos?θ3000001]=\left[\begin{array}{cccc} \cos \theta_{2} \cos \theta_{3} & -\cos \theta_{2} \sin \theta_{3} & -\sin \theta_{2} & a_{1} \cos \theta_{2}+a_{0} \\ \sin \theta_{2} \cos \theta_{3} & -\sin \theta_{2} \sin \theta_{3} & \cos \theta_{2} & a_{1} \sin \theta_{2} \\ -\sin \theta_{3} & -\cos \theta_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] =?????cosθ2?cosθ3?sinθ2?cosθ3??sinθ3?0??cosθ2?sinθ3??sinθ2?sinθ3??cosθ3?0??sinθ2?cosθ2?00?a1?cosθ2?+a0?a1?sinθ2?01??????

出自:機器人學入門必看

總結

以上是生活随笔為你收集整理的DH参数法 例题 机器人学的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。