日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

GIS应用实例--模型预测、多元回归、空间自相关分析

發(fā)布時間:2023/12/14 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 GIS应用实例--模型预测、多元回归、空间自相关分析 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

免費(fèi)數(shù)據(jù)和原報告詳見個人主頁

中國地質(zhì)大學(xué)(武漢)地理信息系統(tǒng)原理課程報告_項(xiàng)目(免費(fèi))-行業(yè)報告文檔類資源-CSDN文庫https://download.csdn.net/download/qq_58010729/85076121
所有數(shù)據(jù)均來源于國家統(tǒng)計局等其他公開網(wǎng)站,僅供研究使用。

?目錄

一、研究方法

1.1移動平滑法

1.2多元回歸分析

1.3最小二乘法回歸

1.4 地理加權(quán)回歸分析

1.5 Moran指數(shù)分析

二、數(shù)據(jù)處理

2.1 數(shù)據(jù)參數(shù)設(shè)計

2.2 空間自相關(guān)

2.3 疫情及其經(jīng)濟(jì)損失的影響因素分析(OLS+GWR)

2.4 疫情及其對各省經(jīng)濟(jì)發(fā)展的總體影響

三、結(jié)論


一、研究方法

1.1移動平滑法

移動平均法是根據(jù)時間序列資料逐漸推移,依次計算包含一定項(xiàng)數(shù)的時序平均數(shù), 以反映長期趨勢的方法。當(dāng)時間序列的數(shù)值由于受周期變動和不規(guī)則變動的影響,起伏較大,不易顯示出發(fā)展趨勢時,可用移動平均法,消除這些因素的影響,分析、預(yù)測序列的長期趨勢。移動平均法有簡單移動平均法,加權(quán)移動平均法,趨勢移動平均法等。

簡單移動平均法的簡述:設(shè)有觀測序列y1,y2,y3,?,yT,取移動平均的項(xiàng)數(shù)N<T。一次簡單移動平均值計算公式為:

當(dāng)預(yù)測目標(biāo)的基本趨勢是在某一水平上下波動時,可用一次簡單移動平均方法建立預(yù)測模型:

其預(yù)測標(biāo)準(zhǔn)誤差為:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

近N期序列值的平均值作為未來各期的預(yù)測結(jié)果。一般 N 的取值范圍:5≤N?≤200。當(dāng)歷史序列的基本趨勢變化不大且序列中隨機(jī)變動成分較多時,N的取值應(yīng)較大一些。否則N的取值應(yīng)小一些。在有確定的季節(jié)變動周期的資料中,移動平均的項(xiàng)數(shù)應(yīng)取周期長度。選擇佳 N 值的一個有效方法是,比較若干模型的預(yù)測誤差。預(yù)測標(biāo)準(zhǔn)誤差小者為好。

簡單移動平均法只適合做近期預(yù)測,而且是預(yù)測目標(biāo)的發(fā)展趨勢變化不大的情況。如果目標(biāo)的發(fā)展趨勢存在其它的變化,采用簡單移動平均法就會產(chǎn)生較大的預(yù)測偏差和滯后。即當(dāng)時間序列出現(xiàn)直線增加或減少的變動趨勢時,用簡單移動平均法來預(yù)測就會有滯后偏差。因此,需要進(jìn)行修正,修正的方法就是作二次移動平均,利用移動平均滯后偏差的規(guī)律來建立直線趨勢的預(yù)測模型。這就是趨勢移動平均法。

? ? ? ? ? ? ? ??

在一次移動平均的基礎(chǔ)上再進(jìn)行一次移動平均就是二次移動平均,其計算公式為:

設(shè)時間序列{yt}從某時期開始具有直線趨勢,且認(rèn)為未來時期也按此直線趨勢變化,則可設(shè)此直線趨勢預(yù)測模型為:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

其中,t為當(dāng)前時期數(shù);T為由t至預(yù)測期的時期數(shù);at為截距;bt為斜率。兩者又稱為平滑系數(shù)。但在后面實(shí)踐中發(fā)現(xiàn),從各年的預(yù)測來看,效果不太行,所以后來考慮了雙指數(shù)平滑法。

一次指數(shù)平滑可以克服移動平均法的缺點(diǎn)。但又平滑法進(jìn)行預(yù)測,仍存在明顯的滯后偏差。因此,也需要雙指數(shù)平滑來彌補(bǔ)。公式為:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

在單指數(shù)平滑法基礎(chǔ)上增加趨勢信息,第二個等式描述趨勢平滑過程,趨勢的未平滑值使當(dāng)前時刻平滑值si減去前一時刻平滑值si-1,再引入?yún)?shù)β對趨勢進(jìn)行一次指數(shù)平滑處理。

表 2-1:平滑預(yù)測比較(以北京市GDP為例)(單位:億元)

年份

真實(shí)GDP

一次平滑

二次平滑

雙指數(shù)平滑

2001

3861.5

3861.5

2002

4525.7

5189.9

2003

5267.2

5904.345

2004

6252.5

6806.441

2005

7149.8

7757.643

2006

8387.0

5907.283

8946.247

2007

10425.5

7001.283

10781.69

2008

11813.1

8215.85

12547.92

2009

12900.9

9488.133

14027.88

2010

14964.0

10940.05

15939.83

2011

17188.8

12613.22

18195.55

2012

19024.7

14386.17

10440.78

20365.73

2013

21134.6

16171.02

11969.07

22621.1

2014

22922.6

18023.17

13603.63

24690.22

2015

24779.1

20002.87

15356.08

26664.67

2016

27041.2

22015.73

17202.03

28839.42

2017

29883.0

24131.43

19121.73

31504.23

2018

33106.0

26478.32

21137.09

34688.4

2019

35445.1

28863.4

23252.49

37563.54

2020

36102.6

36718.679

40060.33

這里雙指數(shù)平滑的指數(shù)取0.5,0.3。結(jié)果顯然比兩次平均平滑法的效果好。

不同指數(shù)下的雙指數(shù)平滑法

1.2多元回歸分析

用回歸方程定量地刻畫一個應(yīng)變量與多個自變量間的線性依存關(guān)系,稱為多元回歸分析(multiple linear regression),簡稱多元回歸(multiple regression)。

多元回歸分析是多變量分析的基礎(chǔ),也是理解監(jiān)督類分析方法的入口!實(shí)際上大部分學(xué)習(xí)統(tǒng)計分析和市場研究的人的都會用回歸分析,操作也是比較簡單的,但能夠知道多元回歸分析的適用條件或是如何將回歸應(yīng)用于實(shí)踐,可能還要真正領(lǐng)會回歸分析的基本思想和一些實(shí)際應(yīng)用手法!

回歸分析的基本思想是:雖然自變量和因變量之間沒有嚴(yán)格的、確定性的函數(shù)關(guān)系,但可以設(shè)法找出最能代表它們之間關(guān)系的數(shù)學(xué)表達(dá)形式。其模型基本表達(dá)式為:

? ? ? ? ??

樣本表達(dá):

? ? ? ? ? ? ? ? ? ? ? ??

矩陣表達(dá):

? ? ? ? ? ? ? ? ? ? ? ?? ? ?

1.3最小二乘法回歸

在所有的回歸方法中,最小二乘法回歸(OLS)最為著名。而且它也是所有空間回歸分析的正確起點(diǎn)。它可以嘗試了解或預(yù)測的變量或過程提供一個全局模型并可創(chuàng)建一個回歸方程來表示該過程。

最小二乘法的主要思想是通過確定未知參數(shù)(通常是一個參數(shù)矩陣),來使得真實(shí)值和預(yù)測值的誤差(也稱殘差)平方和最小,其計算公式為:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

其中yi是真實(shí)值。如下圖所示,就是最小二乘法的一個示例,其中紅色為數(shù)據(jù)點(diǎn),藍(lán)色為最小二乘法求得的最佳解,綠色即為誤差。
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

最小二乘法示意圖

1.4 地理加權(quán)回歸分析

空間數(shù)據(jù)在地理學(xué)、經(jīng)濟(jì)學(xué)、環(huán)境學(xué)、生態(tài)學(xué)以及氣象學(xué)等眾多領(lǐng)域中廣泛存在。根據(jù)Tobler提出的「地理學(xué)第一定律」︰任何事物之間都是空間相關(guān)的,距離越近的事物之間的何怕大)士R2大。因此,不同于傳統(tǒng)的截面數(shù)據(jù),空間數(shù)據(jù)的空間相關(guān)性會導(dǎo)致回歸關(guān)系的空間非平棕性(空同異質(zhì)性)。為了探索空間數(shù)據(jù)的空間非平穩(wěn)性,Brunsdon等(1996)首次提出了地理加權(quán)回歸模型,設(shè)定如下:

其中,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

為空間地理位置函數(shù)。

?根據(jù)Tobler地理學(xué)第一定律,距離越近的事物之間的相關(guān)性越大。故對于一個給定的地理位置

,可以采用局部加權(quán)最小二乘法來估計,即

?其中,是在地理位置處的空間權(quán)重。令

?

則在處的局部最小二乘估計值為

?其中:

? ?由于地理加權(quán)回歸模型中的回歸參數(shù)在每個數(shù)據(jù)采樣點(diǎn)上都是不同的,因此其未知參數(shù)的個數(shù)為n×(P+1),遠(yuǎn)遠(yuǎn)大于觀測個數(shù)n,這樣就不能直接利用參數(shù)回歸估計方法估計其中的未知參數(shù),而一些非參數(shù)光滑方法為擬合該模型提供了一個可行的思路。Foste & Gorr (1986)和Gorr & 0lligsehiaeger ( 1994)利用廣義阻尼負(fù)反饋(generalized damped negative feedback)方法估計未知參數(shù)在各地理位置的值,這種估計方法只是在很直觀的意義上考慮數(shù)據(jù)的空間結(jié)構(gòu),加之估計方法較為復(fù)雜,很難對估計量作深入的統(tǒng)計推斷方面的研究。Brunsdon 等(1996)在局部多項(xiàng)式光滑思想上提出了偏差和方差折衷(Bias-Variance Trade-off)的解題思路:假設(shè)回歸參數(shù)為一連續(xù)表面,位置相鄰的回歸參數(shù)非常相似在估計采樣點(diǎn)i的回歸參數(shù)時,以采樣點(diǎn)i及其鄰域采樣點(diǎn)上的觀測值構(gòu)成局域子樣,建立全局線性回歸模型,然后采用最小二乘方法得到回歸參數(shù)估計Bx(k=0.1,2,…,p)。對于另一個采樣點(diǎn),i+1采用另一個相應(yīng)的局域子樣來估計,以此類推。由于在回歸分析過程中,以其它采樣點(diǎn)上的觀測值來估計i點(diǎn)上的回歸參數(shù)因此得到的i點(diǎn)上的參數(shù)估計不可避免存在偏差,即參數(shù)估計為有偏估計。顯然參與回歸估計的子樣規(guī)模越大,參數(shù)估計的偏差就越大,參與回歸估計的子樣規(guī)模越小,參數(shù)估計的偏差就越小。從降低偏差這一角度考慮因盡量減少子樣規(guī)模,但子樣規(guī)模的減少必然導(dǎo)致回歸參數(shù)估計值的方差增加,精度降低。

1.5 Moran指數(shù)分析

莫蘭指數(shù)分為全局莫蘭指數(shù)(Global Moran's I)和局部莫蘭指數(shù)(Local Moran's I),前者是Patrick Alfred Pierce Moran開發(fā)的空間自相關(guān)的度量;后者是美國亞利桑那州立大學(xué)地理與規(guī)劃學(xué)院院長 Luc Anselin 教授在1995年提出的。

莫蘭指數(shù)是一個有理數(shù),經(jīng)過方差歸一化之后,它的值會被歸一化到 -1.0 與 +1.0 之間。Moran's I大于0時,表示數(shù)據(jù)呈現(xiàn)空間正相關(guān),其值越大空間相關(guān)性越明顯;Moran's I小于0時,表示數(shù)據(jù)呈現(xiàn)空間負(fù)相關(guān),其值越小空間差異越大;Moran's I為0時,空間呈隨機(jī)性。

其定義如下:

通常情況,先做一個地區(qū)的全局I指數(shù),全局指數(shù)只是告訴我們空間是否出現(xiàn)了集聚或異常值,但并沒有告訴我們在哪里出現(xiàn)。換句話說全局Moran'I只回答Yes還是NO;如果全局有自相關(guān)出現(xiàn),接著做局部自相關(guān);局部Moran'I會告訴我們哪里出現(xiàn)了異常值或者哪里出現(xiàn)了集聚,是一個回答Where的工具。

二、數(shù)據(jù)處理

2.1 數(shù)據(jù)參數(shù)設(shè)計

? ? ? ??

2.2 空間自相關(guān)

根據(jù)地理學(xué)第一定律,空間上的事物都是有相關(guān)性的,離得越近相關(guān)性越強(qiáng) ;離得越遠(yuǎn)相關(guān)性越弱。測試空間上某點(diǎn)的觀測值是否與相鄰點(diǎn)的值存在相關(guān)性,就是空間自相關(guān)的含義??臻g自相關(guān)可以從定性和定量兩個方面理解。現(xiàn)有多種指數(shù)可以量化空間自相關(guān),最主要的兩種指數(shù)為 Moran’I 指數(shù)和 Geary’C 指數(shù),本次研究主要聚焦于Moran’I 指數(shù)。

空間自相關(guān)包括全局和局部兩個層面。全局空間自相關(guān)是對屬性值在整個區(qū)域的空間特征描述,局部空間自相關(guān)反映區(qū)域經(jīng)濟(jì)空間差異的變化趨勢。空間自相關(guān)的結(jié)果會直接給出該數(shù)據(jù)的分布特征,即聚集、分散還是隨機(jī)。

(1)全局空間自相關(guān)

全局空間自相關(guān)是在整個研究范圍內(nèi)分析指定的屬性是否具有自相關(guān)性。根據(jù)整體分布狀況判斷某現(xiàn)象在空間是否有聚集特性存在,但不能確切地指出聚集在哪些地區(qū)以全局空間自相關(guān)的 Global Moran’I 為例,經(jīng)過方差歸一化之后,I 值在 [-1,1] 之間 :若 I 值 >0,表示數(shù)據(jù)呈空間正相關(guān)性,在空間上呈現(xiàn)聚集狀態(tài),具體表現(xiàn)為高值與高值聚集,低值與低值聚集。此時,I值越大,空間相關(guān)性越明顯。若 I 值 <0,表示數(shù)據(jù)呈空間負(fù)相關(guān)性,在空間上呈現(xiàn)分散狀態(tài),具體表現(xiàn)為高值排斥其他高值,傾向于靠近低值,或低值排斥其他低值,傾向于靠近高值。若 I 值 =0,表示數(shù)據(jù)呈隨機(jī)狀態(tài),在空間上沒有明顯的分布規(guī)律,空間相關(guān)性不明顯。另外,該工具還給出 z 得分和 p 值,對 I 值的顯著性進(jìn)行評估。Global Moran’I 公式如下 :

在本次研究中,n 表示省級行政區(qū)個數(shù),w(i,j)表示 n×n 的空間權(quán)重矩陣(可用鄰接性或空間距離閾值構(gòu)造,w(i,j)?的值為 0 或 1),xi?表示某省的GDP 觀測值。

以 I 值判斷全國GDP 整體的空間自相關(guān)性 :若I 值顯著為正,表明人GDP 較高(或較低)的地市在空間上集聚,I 值越接近 1,總體空間差異越小 ;若 I 值顯著為負(fù),表明GDP 較高的地市較分散, GDP較高的地市附近普遍是GDP 較低的地市,I 值越接近 -1,總體空間差異越大 ;若 I 值接近 0,表明GDP 在空間上隨機(jī)分布,沒有明顯規(guī)律。

(2)局部空間自相關(guān)

局域空間自相關(guān)主要研究每個區(qū)域與其周邊地區(qū)之間的關(guān)聯(lián)性,分析空間分布的異質(zhì)性。本論述采用 Local Moran's I,Moran 散點(diǎn)圖描述的是變量與其空間滯后(即該觀測值周圍鄰居的加權(quán)平均)向量之間的相關(guān)關(guān)系。橫坐標(biāo)為各單元標(biāo)準(zhǔn)化處理后的屬性值,縱坐標(biāo)為其空間連接矩陣所決定相鄰單元的屬性值的平均值。其分為四個象限,第一象限代表高觀測值區(qū)域被同是高值的區(qū)域所包圍(HH);第二象限代表低值被高值包圍(LH);第三象限代表低值被低值包圍(LL);第四象限代表高值被低值包圍(HL)。位于一三象限的空間單元存在較強(qiáng)的空間正相關(guān),表示區(qū)域的集聚性和相似性;位于二四象限的空間單元存在較強(qiáng)的空間負(fù)相關(guān),反應(yīng)區(qū)域的異質(zhì)性。Local Moran’I公式如下:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

其中,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ??

為空間權(quán)重值,n為研究區(qū)域上所有地區(qū)的總數(shù),Ii則代表地i個地區(qū)的Local Moran’I指數(shù),其中各項(xiàng)式子及其含義以表格方式呈現(xiàn)如下:

Local Moran’I指數(shù)各項(xiàng)式子及其含義

本次研究聚焦于2016-2020年間各個省份地區(qū)(不包括海南、香港、澳門、臺灣等省份或特別行政區(qū),下同)的GDP增長率及GDP總量 Global Moran’ I指數(shù)和Local Moran’ I指數(shù),探究我國GDP分布及GDP增長的空間自相關(guān)性的程度。

3.3.1 GDP增長率

利用空間統(tǒng)計分析軟件GeoDA分別計算了中國2016~2020這五年的全國各個省份GDP Global Moran’ I指數(shù),并繪制出各年度的變化趨勢圖,結(jié)果見圖1所示。

從表可以看出,計算出來的I值均大于0,且2016-2019年間的指數(shù)值大約都在0.1附近,說明這4年間,全國各省級行政區(qū)的GDP在整體上呈現(xiàn)一定程度的聚集狀態(tài),即GDP增長較高(或較低)的省份,其周邊的省份GDP增長也較高(或較低)。這一現(xiàn)象十分正常,因?yàn)楦鱾€省份的經(jīng)濟(jì)發(fā)展模式、主體經(jīng)濟(jì)行業(yè)都各不相同,且其經(jīng)濟(jì)模式一定程度上受到地理空間條件的制約,因此會在地理空間上呈現(xiàn)一定聚集狀態(tài)。但2020年,全國GDP增長率Global Moran’ I指數(shù)驟降到0.023左右,已經(jīng)接近于0,說明該年份的GDP增長率幾乎均勻分布,無明顯的空間自相關(guān)性??紤]2020年是由于新冠疫情的影響,全國經(jīng)濟(jì)遭受重創(chuàng),經(jīng)濟(jì)增長遲緩,但同時,由于國家疫情防控到位,及時采取相關(guān)措施控制疫情流行,2020年新冠疫情沒有大規(guī)模擴(kuò)散,收到嚴(yán)重影響的只有湖北省,這一點(diǎn)從2020年全國各省份Global Moran’ I指數(shù)統(tǒng)計圖(如圖3-2)也可以直觀地看出,各省份除湖北省外在統(tǒng)計圖上的位置均較為集中。

2020年全國各省份Global Moran’ I指數(shù)統(tǒng)計圖

具體到局部的Moran’ I指數(shù),五年間的全國各個省份GDP局部聚集圖如所示

五年間的全國各個省份GDP局部聚集圖

其中紅色省份地區(qū)為“高-高”區(qū)域,即該地區(qū)的GDP增長率高,且周邊地區(qū)的GDP增長率也高。

2.3 疫情及其經(jīng)濟(jì)損失的影響因素分析(OLS+GWR)

本節(jié)我們會分別通過最小二乘法回歸(OLS)和地理加權(quán)回歸(GWR)對8-10個變量進(jìn)行分析,因變量統(tǒng)一為2019-2020GDP增長率相較于2018-2019GDP增長率的相對變化率。

OLS部分:

為了尋找哪些因素會在疫情背景下影響GDP,選取了以下十個作為自變量進(jìn)行最小二乘法回歸擬合(OLS):

1.最小二乘法回歸標(biāo)準(zhǔn)殘差分布:

可以看出,除了廣東省之外,整體的標(biāo)準(zhǔn)殘差維持在了一個較小的區(qū)間范圍內(nèi)(尤其是中西部地區(qū)),湖北由于疫情較為嚴(yán)重,所以在圖中處于一個較為特殊的值(周圍較均明顯低于其)。這保證了后續(xù)的分析具有一定的可靠性。

2.整體結(jié)果概覽:

OLS結(jié)果匯總-模型變量

除了相對疫情指數(shù)外,其余幾個指標(biāo)的概率[b]均過高,顯示出結(jié)果可靠性欠佳。

七個字段的說明及意義如下:

(1)系數(shù)[a]

??? 回歸分析的系數(shù)代表了每個自變量對因變量的貢獻(xiàn)度,系數(shù)的絕對值越大,表示該變量在模型里面貢獻(xiàn)越大,也表示了該自變量與因變量的關(guān)系越緊密。

??? 另外這些系數(shù)的值表明了自變量與因變量的關(guān)系,比如S(總出口)的系數(shù)為0.58,則表示當(dāng)總出口每增加一個單位,在其他自變量的值不發(fā)生改變的時候,因變量財政收入會增加0.58個單位。

??? 而且這個系數(shù)也表示了自變量與因變量之間的關(guān)系類型,即它分為正向和負(fù)向,系數(shù)為正,表示正相關(guān),系數(shù)為負(fù),表示負(fù)相關(guān)。不管是正向大還是負(fù)向大,越大,表示與因變量的關(guān)系強(qiáng)度越大,只不過是正相關(guān)還是負(fù)相關(guān)的問題。該參數(shù)是整個回歸模型里面最重要的參數(shù),沒有之一。

(2)回歸系數(shù)的標(biāo)準(zhǔn)差

??? 回歸的標(biāo)準(zhǔn)誤是模型中隨機(jī)擾動項(xiàng)(誤差項(xiàng))的標(biāo)準(zhǔn)差的估計值。它的平方誤差項(xiàng)的方差的無偏估計量,實(shí)際上又叫做誤差均方,等于殘差的平方和/(樣本容量-待估參數(shù)的個數(shù))。這個值越小,表示模型的預(yù)測越準(zhǔn)。

(3)t統(tǒng)計量

??? 在統(tǒng)計學(xué)里面,t統(tǒng)計量是假設(shè)檢驗(yàn)的重要樞軸量,多用于兩樣本均值檢驗(yàn),回歸模型系數(shù)顯著性檢驗(yàn)。

T-Statistic=平均值 / 標(biāo)準(zhǔn)誤

一般來來說,這個值表示,與P-value意義差不多,都是在驗(yàn)證零假設(shè)的情況下,模型的顯著性,但是有些時候P-value會有一些問題,比如丟失一些信息。計算機(jī)里面進(jìn)行統(tǒng)計驗(yàn)證的時候,T統(tǒng)計量越大,表示越顯著。

(4)、概率[b]:

??? 這個就是P值,用來表示系數(shù)是否具有統(tǒng)計學(xué)上的顯著性,越小則顯著性越高。

(5)、(6)、(7):Robust_SE Robust_t Robust_Pr [b]這三個字段,分別表示了標(biāo)準(zhǔn)差的健壯度、T統(tǒng)計量的健壯度和概率的健壯度。

在統(tǒng)計學(xué)里面,Robust Test通常被翻譯穩(wěn)健性檢驗(yàn),一般來說,就是通過修改(增添或者刪除)變量值,看所關(guān)注解釋變量的回歸系數(shù)和結(jié)果是否穩(wěn)健。

3.標(biāo)準(zhǔn)殘差圖:

標(biāo)準(zhǔn)殘差的分布近似符合正態(tài)分布,說明擬合模型效果尚可。

4.變量分布和關(guān)系:

這里會根據(jù)每組變量,形成一個自變量的分布柱狀圖(第一排)以及自變量和因變量組成的散點(diǎn)和回歸圖(第二排)。

首先要注意的是,OLS對自變量的分布是不是正態(tài)的,并不關(guān)心,但是如果Jarque-Bera統(tǒng)計量的P值指示,結(jié)果出現(xiàn)了偏差(也就是說殘差的分布不平衡),那么說明自變量的分布,可能影響到了回歸模型,所以這種情況下,我們可以嘗試對某些偏差嚴(yán)重的自變量進(jìn)行一些變換,然后重新建模驗(yàn)證(比如進(jìn)行Log變換等)。

理論上,進(jìn)行回歸分析,每個自變量應(yīng)該都要與因變量有相關(guān)性,如果某組出現(xiàn)了非線性,則表示此自變量無法對因變量進(jìn)行解釋,要么剔除掉,要么需要進(jìn)行變換。


圖 3-7:殘差與預(yù)測圖

從理論上來說,預(yù)測值和殘差值應(yīng)該沒有任何的相關(guān)性,因?yàn)槿魏晤A(yù)測和殘差的情況的產(chǎn)生都是隨機(jī)的,這樣才是最優(yōu),如果出現(xiàn)了相關(guān)性,就表示某些殘差的出現(xiàn)是有規(guī)律的,這樣就表示模型出現(xiàn)了偏差。

可以看出,本次最小二乘法回歸的殘差分布較為隨機(jī),說明結(jié)果具有一定的可靠性。

結(jié)論:由于自變量本身數(shù)量級的巨大差異性,我們難以從系數(shù)方面分析各類因素對GDP增長率的相對變化率的影響,而且OLS本身也并并不能從空間異質(zhì)性的角度分析出有價值的結(jié)論,接下來我們會利用地理加權(quán)回歸模型進(jìn)行進(jìn)一步分析。

GWR部分:

仿照最小二乘法的系數(shù)選擇,由于GWR分析的特殊性,為保證數(shù)據(jù)的多重共線性、自相關(guān)性等維持在一個較低的水平,在剔除了2020建筑業(yè)增加值和2020批發(fā)零售增加值后,對剩余的八個屬性進(jìn)行回歸分析。

因變量仍為2019-2020GDP增長率相較于2018-2019GDP增長率的相對變化率。

預(yù)備知識:GWR相關(guān)結(jié)果含義解讀:

Predicted

對因變量的預(yù)測值:這些值是由 GWR 計算所得的估計(或擬合)y 值。這個值一般用來和因變量進(jìn)行對比,越接近,表示擬合度越高。

Coefficient Intercept

截距:與Y軸的交點(diǎn),這里的截距為負(fù),表示觀測值小于預(yù)測值。

Coefficient

各樣本的各個自變量的系數(shù)。GWR的特點(diǎn)就在這里,不同于OLS,GWR會給出每個位置每個自變量的系數(shù)。

Residual

殘差,就是觀測值與預(yù)測值的差。

Standard Error

標(biāo)準(zhǔn)誤

不是標(biāo)準(zhǔn)差,標(biāo)準(zhǔn)差的英文是:standard deviation):衡量的是我們在用樣本統(tǒng)計量去推斷相應(yīng)的總體參數(shù)(常見如均值、方差等)的時候,一種估計的精度。

Standard Error Intercept

標(biāo)準(zhǔn)誤的截距:標(biāo)準(zhǔn)差與Y軸的交點(diǎn)。

Standard Error Coefficient

各自變量系數(shù)標(biāo)準(zhǔn)誤:參考標(biāo)準(zhǔn)誤的解釋。在這里,這些值用于衡量每個系數(shù)估計值的可靠性。標(biāo)準(zhǔn)誤與實(shí)際系數(shù)值相比較小時,這些估計值的可信度會更高。較大標(biāo)準(zhǔn)誤差可能表示局部多重共線性存在問題。

Std. Residual

標(biāo)準(zhǔn)化殘差:這個值也是ArcGIS進(jìn)行GWR分析之后,給出的默認(rèn)可視化結(jié)果。標(biāo)準(zhǔn)化殘差的平均值為零,標(biāo)準(zhǔn)差為 1。在 ArcMap 中執(zhí)行 GWR 時,將自動將標(biāo)準(zhǔn)化殘差渲染為由冷色到暖色渲染的地圖。官方說法是,請檢查超過2.5倍標(biāo)準(zhǔn)化殘差的地方,這些地方可能是有問題。

參數(shù)列表如下:

參數(shù)方面,可以看到R2普遍維持在0.49以上,系數(shù)截距普遍維持在-12左右,觀測值與預(yù)測值差距不大 ,結(jié)果較為可靠:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ??

可以看出,除西藏和吉林外,其余地區(qū)的標(biāo)準(zhǔn)殘差均在2.5倍標(biāo)準(zhǔn)差內(nèi),官方說法是,請檢查超過2.5倍標(biāo)準(zhǔn)化殘差的地方,這些地方可能是有問題。從這個角度來看擬合效果較為準(zhǔn)確,大部分地區(qū)的擬合結(jié)果可以采信,從而保證了后續(xù)的結(jié)果分析具有一定的可靠性。

1.R2分布:

在社會學(xué)分析中,R2在0.5左右已經(jīng)是較好的擬合模型了。本次的地理加權(quán)回歸中各省R2均位于0.5附近,且由西北內(nèi)陸向東南沿海遞增,呈現(xiàn)出一定的空間分布變化規(guī)律,說明擁有較好的擬合效果,后續(xù)分析結(jié)果可采納,同時也體現(xiàn)出GWR回歸分析的必要性。

3.疫情對各省級行政區(qū)GDP的影響系數(shù)分布:

由影響系數(shù)均為負(fù)可以看出,疫情對各省級行政區(qū)GDP均產(chǎn)生了負(fù)面影響,這一點(diǎn)符合常識。且這種影響呈現(xiàn)出一定規(guī)律的的空間異質(zhì)性,即由東北至西南影響逐漸變大,但總體維持在了一個相對穩(wěn)定的水平。具體原因可能是因?yàn)閲覍用嫱ㄟ^宏觀調(diào)控等手段有效控制了疫情對地區(qū)經(jīng)濟(jì)發(fā)展帶來的影響,所以單從疫情方面來分析可能不能得到較好的分析結(jié)果,故接下來將分析其他因素對GDP的影響。

4.失業(yè)率對各省級行政區(qū)GDP的影響系數(shù)分布:

?由上圖可以看出失業(yè)率對各省級行政區(qū)GDP的影響,可以看出,這種影響整體上右東部至西部逐漸增強(qiáng),在中西地區(qū),由于失業(yè)率的上升,在疫情之下對GDP產(chǎn)生了不小的沖擊,具體原因可能是這些地區(qū)勞動力較為集中,GDP對勞動力依存度比較高,疫情背景下失業(yè)率上升對該種經(jīng)濟(jì)結(jié)構(gòu)的地區(qū)經(jīng)濟(jì)影響較大,相比較而言東部地區(qū)經(jīng)濟(jì)結(jié)構(gòu)對勞動力依存較小,故失業(yè)率對GDP造成的影響相較于中西部地區(qū)較小。

5.出口額對各省GDP影響分布:

可以看到,相比于其他疫情不那么嚴(yán)重的地區(qū),在受疫情影響較為嚴(yán)重的湖北、河南等地,出口額并未對GDP增長造成大的損失。猜測原因一方面是國家政策的傾斜,如鼓勵湖北產(chǎn)的商品出口、周圍省份可出口廉價產(chǎn)品支援湖北等;另一方面,可能這些省份本身的出口額占GDP比重并不大,故出口額變化對GDP無大的影響。整體影響的變化趨勢是從東北至西南逐漸變大。推測疫情導(dǎo)致工廠關(guān)門、工業(yè)產(chǎn)出下降,進(jìn)而導(dǎo)致出口額降低幅度較大,而這些省份經(jīng)濟(jì)較為依賴出口,故出口額下降對GDP影響較大。

6. 進(jìn)口額對各省GDP影響分布:

和上面的出口額進(jìn)行對比,可以很明顯發(fā)現(xiàn)二者變化趨勢的差異性。進(jìn)口額變化對GDP的影響程度是由東南沿海向西北內(nèi)陸遞減。沿海地區(qū)交通發(fā)達(dá),對進(jìn)口商品依存度大(外省進(jìn)口以及國外進(jìn)口)而疫情極大的影響力這些地方的商品進(jìn)口,進(jìn)而對GDP產(chǎn)生了較大的影響。相反地,內(nèi)陸地區(qū)本就對進(jìn)口依存度不高,故在疫情大背景下GDP受影響程度不高。進(jìn)口和出口額地理空間分布趨勢的差異性也可反映出地理加權(quán)回歸的顯著優(yōu)勢。

7.工業(yè)產(chǎn)出對各省GDP影響分布:

我們知道,在東北老工業(yè)基地相關(guān)省份,工業(yè)占比大,這些地方的工業(yè)產(chǎn)出對GDP影響比重顯著高于其他省,而在疫情大背景下,許多工廠停產(chǎn),工業(yè)產(chǎn)出大大下降,進(jìn)而對GDP產(chǎn)生了較為顯著的損失影響。西南地區(qū)工業(yè)產(chǎn)值占比小,故其浮動對GDP影響較小。

附表:

? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

第一、二、三產(chǎn)業(yè)附加值對各省GDP影像系數(shù)

結(jié)論:

國民生產(chǎn)總值(GDP)是一個相當(dāng)復(fù)雜的結(jié)果,其受相當(dāng)多的因素的影響,疫情確實(shí)是其中的一個顯著因素,但許多時候疫情并不直接影響經(jīng)濟(jì),而是通過影響進(jìn)出口額度或工業(yè)產(chǎn)出等方面來間接影響GDP。要研究清楚疫情究竟怎樣影響GDP,需要在對經(jīng)濟(jì)學(xué)原理有著深刻認(rèn)識的條件下,通過大量數(shù)據(jù)的分析,并通過大量的方法比較才有可能得到比較有價值的結(jié)果。很顯然,單從一個地理加權(quán)回歸分析并不能獲得理想中的結(jié)果,只能從某些方面對結(jié)果窺知一二,得出一些推測層面的簡單結(jié)論。

2.4 疫情及其對各省經(jīng)濟(jì)發(fā)展的總體影響

???? 2020年年初國內(nèi)爆發(fā)的新冠疫情使國內(nèi)各省各地區(qū)的生產(chǎn)和生活收到普遍沖擊,但各省表現(xiàn)不一樣,國內(nèi)疫情主打以湖北省為中心展開傳播。

???? 由圖可以看出,全國疫情分布基本上以湖北為中心,進(jìn)行傳播。經(jīng)計算各省相對疫情指數(shù)indexi和GDP損失率Lossi其計算公式為:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

將計算出的結(jié)果進(jìn)行統(tǒng)計,各個列出位于前十的省市:

表 3-5:相對疫情與GDP損失率排前十的省市

疫情情況

經(jīng)濟(jì)情況

省市

相對疫情

省市

GDP損失率

1

湖北

11.86%

湖北

16.134%

2

黑龍江

0.30%

青海

10.257%

3

北京

0.27%

新疆

9.959%

4

上海

0.26%

北京

9.876%

5

江西

0.21%

上海

9.796%

6

浙江

0.19%

陜西

9.795%

7

重慶

0.17%

天津

9.405%

8

海南

0.16%

廣東

9.290%

9

安徽

0.16%

河南

9.198%

10

湖南

0.15%

內(nèi)蒙古

9.143%

直觀的分布圖如下:

相對疫情分布

GDP損失程度分布

OLS報表:

?以上結(jié)果顯示二者確實(shí)存在一定的相關(guān)性,可見從整體而言疫情對GDP產(chǎn)生了不小的影響。

例如,湖北疫情是國內(nèi)最嚴(yán)重的。北京、上海等地區(qū)因?yàn)閰^(qū)域小,人口規(guī)模不大,基數(shù)相對較小和疫情傳播更聚集,導(dǎo)致相對疫情較嚴(yán)重。湖南、安徽、重慶、江西距離湖北較近,受到的波及較大。

就經(jīng)濟(jì)發(fā)展方面,湖北因?yàn)橐咔閷?dǎo)致的封城必然會受到非常大的經(jīng)濟(jì)沖擊。青海、新疆、陜西、內(nèi)蒙古因?yàn)楫a(chǎn)業(yè)鏈單一,在特殊情況下,難以做到變通適應(yīng),導(dǎo)致了一定性質(zhì)上的經(jīng)濟(jì)損失。北京、上海、廣東、天津等省市因?yàn)榈貐^(qū)盛世繁榮,在這一特殊情況下,要想達(dá)到預(yù)期的經(jīng)濟(jì)發(fā)展確實(shí)有一定難度。

三、結(jié)論

GDP無疑是國民經(jīng)濟(jì)核算的核心指標(biāo)和衡量一個國家或地區(qū)經(jīng)濟(jì)狀況和發(fā)展水平的最重要指標(biāo),長期以來各派學(xué)者對GDP影響因素的研究絡(luò)繹不絕。本文站在地理空間分析的角度,簡略分析了新冠疫情這一大背景下GDP受到了怎樣的影響以及被哪些因素影響。由于GDP是一個相當(dāng)復(fù)雜的結(jié)果,所以我們所做的研究只能算是窺探性或者說是驗(yàn)證性的研究。

總的來說,疫情對GDP的影響是負(fù)面的,這一點(diǎn)從預(yù)測分析和多元分析方面都可以窺見——幾種預(yù)測模型都顯示實(shí)際值低于預(yù)測值,基于此預(yù)測值計算的GDP損失程度確實(shí)與相對疫情指數(shù)存在著一定的相關(guān)性;后續(xù)的多元回歸分析進(jìn)一步印證了這一點(diǎn),即疫情雖然對某些行業(yè)發(fā)展利好(如醫(yī)療、某些電商行業(yè)等),但是總體上仍然對中國的經(jīng)濟(jì)發(fā)展產(chǎn)生了不小的影響。從地理加權(quán)回歸分析的結(jié)果來看,不同因素對GDP的影響有著不小的空間異質(zhì)性,這種異質(zhì)性時常存在著某些規(guī)律,而且不同因素所呈現(xiàn)的空間變化規(guī)律有時是截然相反的。這種異質(zhì)性的來源可能與地區(qū)自身的發(fā)展水平、人口、地理位置、經(jīng)濟(jì)結(jié)構(gòu)等等有關(guān)(例如某些省份經(jīng)濟(jì)結(jié)構(gòu)單一,受疫情沖擊影響大),在處理這種空間異質(zhì)性時,就可以體現(xiàn)出空間分析的必要性和強(qiáng)大威力,也是空間分析與其他類型分析的不同之處。

GDP是一個宏大的主題,這也導(dǎo)致了GDP本身受到的影響因素實(shí)在過多,所以在分析的時候,有時并不能得到理想中的結(jié)論。例如國家為了減小疫情下經(jīng)濟(jì)發(fā)展的不平衡、減小差異,會對某些疫情嚴(yán)重的省份給予政策上的傾斜,例如進(jìn)出口商品政策的傾斜、稅率的調(diào)整、土地政策的傾斜等等。而我們在一般的分析中很難將這種政策傾斜考慮在內(nèi),這就會使得結(jié)論在意料之外;此外,GDP也會受到近幾年來中美貿(mào)易戰(zhàn)的影響,所以只以近三年GDP數(shù)據(jù)得到的增長率的相對變化率作為因變量會顯得說服力沒有那么強(qiáng)(因?yàn)橘Q(mào)易戰(zhàn)也會在許多方面影響GDP,需要對其與疫情造成的GDP影響通過某些方法加以區(qū)分);有時也會受困于我們自身對經(jīng)濟(jì)學(xué)原理認(rèn)識的不足而難以從獲得的數(shù)據(jù)中分析出有價值的結(jié)論,這也是本研究目前存在的不足。

由此可知,本次研究下一步的改進(jìn)方法是擴(kuò)大搜索面,考慮包括國家政策、政治環(huán)境等在內(nèi)的更多因素對GDP的影響,并通過合適的篩選分批對自變量進(jìn)行處理,以此得到多項(xiàng)結(jié)論,通過合適的方法評判可靠性后綜合得出結(jié)論。

總結(jié)

以上是生活随笔為你收集整理的GIS应用实例--模型预测、多元回归、空间自相关分析的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。