日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 目标检测 >内容正文

目标检测

目标检测的算法

發布時間:2023/12/14 目标检测 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 目标检测的算法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

基于深度學習的目標檢測算法分為2類:Two Stage和One Stage。
Two Stage:先預設一個區域,改區域稱為region proposal,即一個可能包含待檢測物體的預選框(簡稱RP),再通過卷積神經網絡進行樣本分類計算。流程是:特征提取 -> 生成RP -> 分類/回歸定位。常見的Two Stage算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN、R-FCN等。

One Stage:不用生成RP,直接在網絡中提取特征值來分類目標和定位
。流程是:特征提取 -> 分類/回歸定位。常見的One Stage算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、YOLOv5、SSD、RetinaNet等。

利用滑動窗口生成RP

對于Two Stage的算法,RP的產生是一個很耗時的過程:通過一個窗口從左到右,從上到下的在整張圖片上以一定的步長進行滑動掃描,每次滑動的時候對當前窗口執行分類計算,如果當前窗口得到較高的概率,則認為檢測到了物體。過程如下圖所示,這個方法也叫滑動窗口。

滑動窗口其實就是個窮舉的過程,由于事先不知道要檢測的目標大小,所以要設置不同大小比例的窗口去滑動,而且要選取合適的步長。這樣做就會非常耗時。R-CNN就是針對此的一個改進策略,利用一種啟發式的方法只掃描可能包含目標的子區域。

利用非極大值抑制算法來挑出最優解

不管

總結

以上是生活随笔為你收集整理的目标检测的算法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。