日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【POJ - 1330】Nearest Common Ancestors(lca,模板题)

發布時間:2023/12/10 编程问答 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【POJ - 1330】Nearest Common Ancestors(lca,模板题) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

題干:

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:?

?
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.?

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.?

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.?
?

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2 16 1 14 8 5 10 16 5 9 4 6 8 4 4 10 1 13 6 15 10 11 6 7 10 2 16 3 8 1 16 12 16 7 5 2 3 3 4 3 1 1 5 3 5

Sample Output

4 3

題目大意:

n個點n-1條有向邊,然后一個詢問u,v 求兩者的lca。

解題報告:

那部分注釋掉的代碼寫哪個都可以。。。

AC代碼:

#include<cstdio> #include<iostream> #include<algorithm> #include<queue> #include<map> #include<vector> #include<set> #include<string> #include<cmath> #include<cstring> #define F first #define S second #define ll long long #define pb push_back #define pm make_pair using namespace std; typedef pair<int,int> PII; const int MAX = 2e5 + 5; int n; int head[MAX]; struct Edge {int to,ne; } e[MAX]; int tot; void add(int u,int v) {e[++tot].to = v;e[tot].ne = head[u];head[u] = tot; } int fa[MAX][22],dep[MAX],in[MAX]; void dfs(int cur,int rt) {fa[cur][0] = rt;dep[cur] = dep[rt]+1;for(int i = 1; i<22; i++) {fa[cur][i] = fa[fa[cur][i-1]][i-1];}for(int i = head[cur]; i!=-1; i = e[i].ne) {int v = e[i].to;if(v == rt) continue;dfs(v,cur);} } int lca(int u,int v) {if(dep[u] < dep[v]) swap(u,v);//讓u往上倍增 int dc = dep[u]-dep[v];for(int i = 21; i>=0; i--) {int now = fa[u][i];if(dep[now] >= dep[v]) u = now;} // for(int i = 0; i<22; i++) { // if((1<<i)&dc) u = fa[u][i]; // }if(u == v) return u;for(int i = 21; i>=0; i--) {if(fa[u][i] != fa[v][i]) {u = fa[u][i];v = fa[v][i];}}return fa[u][0]; } int main() { int t,u,v;cin>>t;while(t--) { scanf("%d",&n);//inittot=0;for(int i = 1; i<=n; i++) head[i] = -1,in[i]=0;for(int i = 1; i<=n-1; i++) {scanf("%d%d",&u,&v);//u is v's parentsadd(u,v);in[v]++;}int tar;for(int i = 1; i<=n; i++) {if(in[i] == 0) {tar = i;break;}}dfs(tar,-1);scanf("%d%d",&u,&v);printf("%d\n",lca(u,v));} return 0 ; } //20:32-20:50

?

總結

以上是生活随笔為你收集整理的【POJ - 1330】Nearest Common Ancestors(lca,模板题)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。