[pytorch、学习] - 3.13 丢弃法
生活随笔
收集整理的這篇文章主要介紹了
[pytorch、学习] - 3.13 丢弃法
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
參考
3.13 丟棄法
過(guò)擬合問(wèn)題的另一種解決辦法是丟棄法。當(dāng)對(duì)隱藏層使用丟棄法時(shí),隱藏單元有一定概率被丟棄。
3.12.1 方法
3.13.2 從零開(kāi)始實(shí)現(xiàn)
import torch import torch.nn as nn import numpy as np import sys sys.path.append("..") import d2lzh_pytorch as d2ldef dropout(X, drop_prob):X = X.float()assert 0 <= drop_prob <= 1keep_prob = 1 - drop_prob# 這種情況下把全部元素都丟棄if keep_prob == 0:return torch.zeros_like(X)mask = (torch.rand(X.shape) < keep_prob).float()return mask * X / keep_prob X = torch.arange(16).view(2, 8) X dropout(X, 0.5) dropout(X, 1)3.13.2.1 定義模型參數(shù)
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True) b1 = torch.zeros(num_hiddens1, requires_grad=True) W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True) b2 = torch.zeros(num_hiddens2, requires_grad=True) W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True) b3 = torch.zeros(num_outputs, requires_grad=True)params = [W1, b1, W2, b2, W3, b3]3.13.2.2 定義模型
drop_prob1, drop_prob2 = 0.2, 0.5def net(X, is_training=True):X = X.view(-1, num_inputs)H1 = (torch.matmul(X, W1) + b1).relu()if is_training: # 只在訓(xùn)練模型時(shí)使用丟棄法H1 = dropout(H1, drop_prob1) # 在第一層全連接后添加丟棄層H2 = (torch.matmul(H1, W2) + b2).relu()if is_training:H2 = dropout(H2, drop_prob2) # 在第二層全連接后添加丟棄層return torch.matmul(H2, W3) + b3# 本函數(shù)已保存在d2lzh_pytorch def evaluate_accuracy(data_iter, net):acc_sum, n = 0.0, 0for X, y in data_iter:if isinstance(net, torch.nn.Module):net.eval() # 評(píng)估模式, 這會(huì)關(guān)閉dropoutacc_sum += (net(X).argmax(dim=1) == y).float().sum().item()net.train() # 改回訓(xùn)練模式else: # 自定義的模型if('is_training' in net.__code__.co_varnames): # 如果有is_training這個(gè)參數(shù)# 將is_training設(shè)置成Falseacc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() else:acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0]return acc_sum / n3.13.2.3 訓(xùn)練和測(cè)試模型
num_epochs, lr, batch_size = 5, 100.0, 256 loss = torch.nn.CrossEntropyLoss() train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)3.13.3 簡(jiǎn)潔實(shí)現(xiàn)
net = nn.Sequential(d2l.FlattenLayer(),nn.Linear(num_inputs, num_hiddens1),nn.ReLU(),nn.Dropout(drop_prob1),nn.Linear(num_hiddens1, num_hiddens2),nn.ReLU(),nn.Dropout(drop_prob2),nn.Linear(num_hiddens2, 10) )for param in net.parameters():nn.init.normal_(param, mean=0, std= 0.01)optimizer = torch.optim.SGD(net.parameters(), lr=0.5) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)總結(jié)
以上是生活随笔為你收集整理的[pytorch、学习] - 3.13 丢弃法的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: python发钉钉消息_Python调用
- 下一篇: [pytorch、学习] - 4.1 模