日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP

發(fā)布時間:2023/12/10 编程问答 32 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?D. Painting The Wall

User ainta decided to paint a wall. The wall consists of?n2?tiles, that are arranged in an?n?×?n?table. Some tiles are painted, and the others are not. As he wants to paint it beautifully, he will follow the rules below.

  • Firstly user ainta looks at the wall. If there is at least one painted cell on each row and at least one painted cell on each column, he stops coloring. Otherwise, he goes to step 2.
  • User ainta choose any tile on the wall with uniform probability.
  • If the tile he has chosen is not painted, he paints the tile. Otherwise, he ignores it.
  • Then he takes a rest for one minute even if he doesn't paint the tile. And then ainta goes to step 1.
  • ?

    However ainta is worried if it would take too much time to finish this work. So he wants to calculate the expected time needed to paint the wall by the method above. Help him find the expected time. You can assume that choosing and painting any tile consumes no time at all.

    Input

    The first line contains two integers?n?and?m?(1?≤?n?≤?2·103;?0?≤?m?≤?min(n2,?2·104)) — the size of the wall and the number of painted cells.

    Next?m?lines goes, each contains two integers?ri?and?ci?(1?≤?ri,?ci?≤?n) — the position of the painted cell. It is guaranteed that the positions are all distinct. Consider the rows of the table are numbered from?1?to?n. Consider the columns of the table are numbered from1?to?n.

    Output

    In a single line print the expected time to paint the wall in minutes. Your answer will be considered correct if it has at most?10?-?4?absolute or relative error.

    Sample test(s) input 5 2
    2 3
    4 1 output 11.7669491886 input 2 2
    1 1
    1 2 output 2.0000000000 input 1 1
    1 1 output 0.0000000000

    題意:有一個n*n的墻,現(xiàn)在小明來刷墻,如果每一行每一列都至少有一個格子刷過了就停止工作,否則每次隨機選一個格子,如果刷過了就不刷如果沒刷過就刷,然后休息一分鐘,求停止工作時時間的數(shù)學(xué)期望(開始之前已經(jīng)有m個格子刷過了)
    題解:dp[i][j]表示還有i行j列未刷
    初始化: dp[i][0]=((n-i)/n)*dp[i][0]+dp[i-1][0]*i/n+1;
    dp[0][j]=((n-j)/n)*dp[0][j]+dp[0][j-1]*j/n+1;
    轉(zhuǎn)移: dp[i][j]=dp[i][j]*(n-i)(n-j)/n^2+dp[i-1][j]*(i*(n-j))/n^2+dp[i][j-1]*((n-i)*j)/n^2+dp[i-1][j-1]*(i*j)/n^2+1;

    #include<iostream> #include<cstdio> using namespace std; double dp[2010][2010]; int n,m,a[2010],b[2010]; int main() {cin>>n>>m;int x,y;int l=n,r=n;for(int i=0; i<m; i++){cin>>x>>y;if(!a[x]) l--;if(!b[y]) r--;a[x]=1,b[y]=1;}for(int i=1; i<=n; i++) dp[i][0]=dp[i-1][0]+(double)n/i;for(int j=1; j<=n; j++) dp[0][j]=dp[0][j-1]+(double)n/j;for(int i=1; i<=n; i++){for(int j=1; j<=n; j++){dp[i][j]=(dp[i-1][j]*i*(n-j)+n*n+dp[i][j-1]*j*(n-i)+dp[i-1][j-1]*i*j)/(n*n-(n-i)*(n-j));}}printf("%0.10f\n",dp[l][r]);return 0; } 代碼

    ?

    轉(zhuǎn)載于:https://www.cnblogs.com/zxhl/p/4846283.html

    總結(jié)

    以上是生活随笔為你收集整理的Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。