深度学习caffe教程
閱讀目錄
- Caffe的優(yōu)勢(shì)
- Caffe的網(wǎng)絡(luò)定義
- 數(shù)據(jù)及其導(dǎo)數(shù)以blobs的形式在層間流動(dòng)。
- Caffe的各層定義
- 訓(xùn)練網(wǎng)絡(luò)
- 安裝了CUDA之后,依次按照Caffe官網(wǎng)安裝指南安裝BLAS、OpenCV、Boost即可。
- Caffe跑跑MNIST試試
- 讓Caffe生成的數(shù)據(jù)集能在Theano上直接運(yùn)行
- Caffe (CNN, deep learning) 介紹
- Caffe深度學(xué)習(xí)之圖像分類(lèi)模型AlexNet解讀
Caffe是一個(gè)清晰而高效的深度學(xué)習(xí)框架,其作者是博士畢業(yè)于UC Berkeley的?賈揚(yáng)清,目前在Google工作。
Caffe是純粹的C++/CUDA架構(gòu),支持命令行、Python和MATLAB接口;可以在CPU和GPU直接無(wú)縫切換:
?| 1 | Caffe::set_mode(Caffe::GPU); |
Caffe的優(yōu)勢(shì)
Caffe給出了模型的定義、最優(yōu)化設(shè)置以及預(yù)訓(xùn)練的權(quán)重,方便立即上手。
Caffe與cuDNN結(jié)合使用,測(cè)試AlexNet模型,在K40上處理每張圖片只需要1.17ms.
可以使用Caffe提供的各層類(lèi)型來(lái)定義自己的模型。
Caffe的網(wǎng)絡(luò)定義
Caffe中的網(wǎng)絡(luò)都是有向無(wú)環(huán)圖的集合,可以直接定義:?
?| 1 2 3 4 5 | name:?"dummy-net" layers {<span><span>name: <span>"data"…</span></span></span>} layers {<span><span>name: <span>"conv"…</span></span></span>} layers {<span><span>name: <span>"pool"…</span></span></span>} layers {<span><span>name: <span>"loss"…</span></span></span>} |
數(shù)據(jù)及其導(dǎo)數(shù)以blobs的形式在層間流動(dòng)。
回到頂部
Caffe的各層定義
Caffe層的定義由2部分組成:層屬性與層參數(shù),例如 ?| 1 2 3 4 5 6 7 8 9 10 11 12 | name:"conv1" type:CONVOLUTION bottom:"data" top:"conv1" convolution_param{ ????num_output:<span>20 ????kernel_size:5 ????stride:1 ????weight_filler{ ????????type:?"<span style="color:?#c0504d;">xavier</span>" ????} } |
Blob
Blob是用以存儲(chǔ)數(shù)據(jù)的4維數(shù)組,例如
- 對(duì)于數(shù)據(jù):Number*Channel*Height*Width
- 對(duì)于卷積權(quán)重:Output*Input*Height*Width
- 對(duì)于卷積偏置:Output*1*1*1
訓(xùn)練網(wǎng)絡(luò)
網(wǎng)絡(luò)參數(shù)的定義也非常方便,可以隨意設(shè)置相應(yīng)參數(shù)。
甚至調(diào)用GPU運(yùn)算只需要寫(xiě)一句話:
?| 1 | solver_mode:GPU |
Caffe的安裝與配置
Caffe需要預(yù)先安裝一些依賴(lài)項(xiàng),首先是CUDA驅(qū)動(dòng)。不論是CentOS還是Ubuntu都預(yù)裝了開(kāi)源的nouveau顯卡驅(qū)動(dòng)(SUSE沒(méi)有這種問(wèn)題),如果不禁用,則CUDA驅(qū)動(dòng)不能正確安裝。以Ubuntu為例,介紹一下這里的處理方法,當(dāng)然也有其他處理方法。
生成mnist-train-leveldb/ 和 mnist-test-leveldb/,把數(shù)據(jù)轉(zhuǎn)化成leveldb格式:
訓(xùn)練網(wǎng)絡(luò):
?| 1 2 3 4 5 6 | # sudo vi/etc/modprobe.d/blacklist.conf # 增加一行 :blacklist nouveau sudoapt-get --purge remove xserver-xorg-video-nouveau???#把官方驅(qū)動(dòng)徹底卸載: sudoapt-get --purge remove nvidia-*????#清除之前安裝的任何NVIDIA驅(qū)動(dòng) sudoservice lightdm stop????#進(jìn)命令行,關(guān)閉Xserver sudokill ?all Xorg |
安裝了CUDA之后,依次按照Caffe官網(wǎng)安裝指南安裝BLAS、OpenCV、Boost即可。
回到頂部
Caffe跑跑MNIST試試
在Caffe安裝目錄之下,首先獲得MNIST數(shù)據(jù)集:
?| 1 2 | cddata/mnist sh get_mnist.sh |
生成mnist-train-leveldb/ 和?mnist-test-leveldb/,把數(shù)據(jù)轉(zhuǎn)化成leveldb格式:
?| 1 2 | cdexamples/lenet sh create_mnist.sh |
訓(xùn)練網(wǎng)絡(luò):
?| 1 | sh train_lenet.sh |
讓Caffe生成的數(shù)據(jù)集能在Theano上直接運(yùn)行
不論使用何種框架進(jìn)行CNNs訓(xùn)練,共有3種數(shù)據(jù)集:
- Training Set:用于訓(xùn)練網(wǎng)絡(luò)
- Validation Set:用于訓(xùn)練時(shí)測(cè)試網(wǎng)絡(luò)準(zhǔn)確率
- Test Set:用于測(cè)試網(wǎng)絡(luò)訓(xùn)練完成后的最終正確率
Caffe生成的數(shù)據(jù)分為2種格式:Lmdb和Leveldb
- 它們都是鍵/值對(duì)(Key/Value Pair)嵌入式數(shù)據(jù)庫(kù)管理系統(tǒng)編程庫(kù)。
- 雖然lmdb的內(nèi)存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要的是lmdb允許多種訓(xùn)練模型同時(shí)讀取同一組數(shù)據(jù)集。
- 因此lmdb取代了leveldb成為Caffe默認(rèn)的數(shù)據(jù)集生成格式。
Google Protocol Buffer的安裝
Protocol Buffer是一種類(lèi)似于XML的用于序列化數(shù)據(jù)的自動(dòng)機(jī)制。?
首先在Protocol Buffers的中下載最新版本:?
https://developers.google.com/protocol-buffers/docs/downloads?
解壓后運(yùn)行:
| 1 2 3 4 5 | ./configure $?make $?makecheck $?makeinstall pip installprotobuf |
添加動(dòng)態(tài)鏈接庫(kù)
?| 1 | exportLD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH |
Lmdb的安裝
?| 1 | pip?installlmdb |
要parse(解析)一個(gè)protobuf類(lèi)型數(shù)據(jù),首先要告訴計(jì)算機(jī)你這個(gè)protobuf數(shù)據(jù)內(nèi)部是什么格式(有哪些項(xiàng),這些項(xiàng)各是什 么數(shù)據(jù)類(lèi)型的決定了占用多少字節(jié),這些項(xiàng)可否重復(fù),重復(fù)幾次),安裝protobuf這個(gè)module就可以用protobuf專(zhuān)用的語(yǔ)法來(lái)定義這些格式 (這個(gè)是.proto文件)了,然后用protoc來(lái)編譯這個(gè).proto文件就可以生成你需要的目標(biāo)文件。?
想要定義自己的.proto文件請(qǐng)閱讀:?
https://developers.google.com/protocol-buffers/docs/proto?hl=zh-cn
編譯.proto文件
?| 1 | protoc--proto_path=IMPORT_PATH --cpp_out=DST_DIR --java_out=DST_DIR--python_out=DST_DIR path/to/file.proto |
| 1 2 3 4 5 6 | --proto_path 也可以簡(jiǎn)寫(xiě)成-I 是.proto所在的路徑 輸出路徑: --cpp_out 要生成C++可用的頭文件,分別是***.pb.h(包含申明類(lèi))***.pb.cc(包含可執(zhí)行類(lèi)),使用的時(shí)候只要include “***.pb.h” --java_out 生成java可用的頭文件 --python_out 生成python可用的頭文件,**_pb2.py,使用的時(shí)候import**_pb2.py即可 最后一個(gè)參數(shù)就是你的.proto文件完整路徑。 |
Caffe (CNN, deep learning) 介紹
Caffe -----------Convolution Architecture For Feature Embedding (Extraction)
- CNN (Deep Learning) 工具箱
- C++ 語(yǔ)言架構(gòu)
- CPU 和GPU 無(wú)縫交換
- Python 和matlab的封裝
- 但是,Decaf只是CPU 版本。
為什么要用Caffe?
- 運(yùn)算速度快。簡(jiǎn)單 友好的架構(gòu) 用到的一些庫(kù):
- Google Logging library (Glog): 一個(gè)C++語(yǔ)言的應(yīng)用級(jí)日志記錄框架,提供了C++風(fēng)格的流操作和各種助手宏.
- lebeldb(數(shù)據(jù)存儲(chǔ)): 是一個(gè)google實(shí)現(xiàn)的非常高效的kv數(shù)據(jù)庫(kù),單進(jìn)程操作。
- CBLAS library(CPU版本的矩陣操作)
- CUBLAS library (GPU 版本的矩陣操作)
Caffe 架構(gòu)
輸入:一批圖像和label (2和3)?
輸出:leveldb (4)?
指令里包含如下信息:
- conver_imageset (構(gòu)建leveldb的可運(yùn)行程序)
- train/ (此目錄放處理的jpg或者其他格式的圖像)
- label.txt (圖像文件名及其label信息)
- 輸出的leveldb文件夾的名字
- CPU/GPU (指定是在cpu上還是在gpu上運(yùn)行code)
CNN網(wǎng)絡(luò)配置文件
- Imagenet_solver.prototxt (包含全局參數(shù)的配置的文件)
- Imagenet.prototxt (包含訓(xùn)練網(wǎng)絡(luò)的配置的文件)
- Imagenet_val.prototxt (包含測(cè)試網(wǎng)絡(luò)的配置文件)
Caffe深度學(xué)習(xí)之圖像分類(lèi)模型AlexNet解讀
在imagenet上的圖像分類(lèi)challenge上Alex提出的alexnet網(wǎng)絡(luò)結(jié)構(gòu)模型贏得了2012屆的冠軍。要研究CNN類(lèi)型DL網(wǎng)絡(luò)模型在圖像分類(lèi)上的應(yīng)用,就逃不開(kāi)研究alexnet,這是CNN在圖像分類(lèi)上的經(jīng)典模型(DL火起來(lái)之后)。
在DL開(kāi)源實(shí)現(xiàn)caffe的model樣例中,它也給出了alexnet的復(fù)現(xiàn),具體網(wǎng)絡(luò)配置文件如下?train_val.prototxt
接下來(lái)本文將一步步對(duì)該網(wǎng)絡(luò)配置結(jié)構(gòu)中各個(gè)層進(jìn)行詳細(xì)的解讀(訓(xùn)練階段):
各種layer的operation更多解釋可以參考?Caffe Layer Catalogue
從計(jì)算該模型的數(shù)據(jù)流過(guò)程中,該模型參數(shù)大概5kw+。
conv1階段DFD(data flow diagram):?
conv2階段DFD(data flow diagram):?
conv3階段DFD(data flow diagram):
conv4階段DFD(data flow diagram):?
? ??
conv5階段DFD(data flow diagram):?
fc6階段DFD(data flow diagram):?
fc7階段DFD(data flow diagram):?
? ? ? ? ? ? ?
fc8階段DFD(data flow diagram):?
? ? ? ? ? ? ?
?
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | I0721 10:38:15.326920? 4692 net.cpp:125] Top shape: 256 3 227 227 (39574272) I0721 10:38:15.326971? 4692 net.cpp:125] Top shape: 256 1 1 1 (256) I0721 10:38:15.326982? 4692 net.cpp:156] data does not need backward computation. I0721 10:38:15.327003? 4692 net.cpp:74] Creating Layer conv1 I0721 10:38:15.327011? 4692 net.cpp:84] conv1 <- data I0721 10:38:15.327033? 4692 net.cpp:110] conv1 -> conv1 I0721 10:38:16.721956? 4692 net.cpp:125] Top shape: 256 96 55 55 (74342400) I0721 10:38:16.722030? 4692 net.cpp:151] conv1 needs backward computation. I0721 10:38:16.722059? 4692 net.cpp:74] Creating Layer relu1 I0721 10:38:16.722070? 4692 net.cpp:84] relu1 <- conv1 I0721 10:38:16.722082? 4692 net.cpp:98] relu1 -> conv1 (in-place) I0721 10:38:16.722096? 4692 net.cpp:125] Top shape: 256 96 55 55 (74342400) I0721 10:38:16.722105? 4692 net.cpp:151] relu1 needs backward computation. I0721 10:38:16.722116? 4692 net.cpp:74] Creating Layer pool1 I0721 10:38:16.722125? 4692 net.cpp:84] pool1 <- conv1 I0721 10:38:16.722133? 4692 net.cpp:110] pool1 -> pool1 I0721 10:38:16.722167? 4692 net.cpp:125] Top shape: 256 96 27 27 (17915904) I0721 10:38:16.722187? 4692 net.cpp:151] pool1 needs backward computation. I0721 10:38:16.722205? 4692 net.cpp:74] Creating Layer norm1 I0721 10:38:16.722221? 4692 net.cpp:84] norm1 <- pool1 I0721 10:38:16.722234? 4692 net.cpp:110] norm1 -> norm1 I0721 10:38:16.722251? 4692 net.cpp:125] Top shape: 256 96 27 27 (17915904) I0721 10:38:16.722260? 4692 net.cpp:151] norm1 needs backward computation. I0721 10:38:16.722272? 4692 net.cpp:74] Creating Layer conv2 I0721 10:38:16.722280? 4692 net.cpp:84] conv2 <- norm1 I0721 10:38:16.722290? 4692 net.cpp:110] conv2 -> conv2 I0721 10:38:16.725225? 4692 net.cpp:125] Top shape: 256 256 27 27 (47775744) I0721 10:38:16.725242? 4692 net.cpp:151] conv2 needs backward computation. I0721 10:38:16.725253? 4692 net.cpp:74] Creating Layer relu2 I0721 10:38:16.725261? 4692 net.cpp:84] relu2 <- conv2 I0721 10:38:16.725270? 4692 net.cpp:98] relu2 -> conv2 (in-place) I0721 10:38:16.725280? 4692 net.cpp:125] Top shape: 256 256 27 27 (47775744) I0721 10:38:16.725288? 4692 net.cpp:151] relu2 needs backward computation. I0721 10:38:16.725298? 4692 net.cpp:74] Creating Layer pool2 I0721 10:38:16.725307? 4692 net.cpp:84] pool2 <- conv2 I0721 10:38:16.725317? 4692 net.cpp:110] pool2 -> pool2 I0721 10:38:16.725329? 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584) I0721 10:38:16.725338? 4692 net.cpp:151] pool2 needs backward computation. I0721 10:38:16.725358? 4692 net.cpp:74] Creating Layer norm2 I0721 10:38:16.725368? 4692 net.cpp:84] norm2 <- pool2 I0721 10:38:16.725378? 4692 net.cpp:110] norm2 -> norm2 I0721 10:38:16.725389? 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584) I0721 10:38:16.725399? 4692 net.cpp:151] norm2 needs backward computation. I0721 10:38:16.725409? 4692 net.cpp:74] Creating Layer conv3 I0721 10:38:16.725419? 4692 net.cpp:84] conv3 <- norm2 I0721 10:38:16.725427? 4692 net.cpp:110] conv3 -> conv3 I0721 10:38:16.735193? 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376) I0721 10:38:16.735213? 4692 net.cpp:151] conv3 needs backward computation. I0721 10:38:16.735224? 4692 net.cpp:74] Creating Layer relu3 I0721 10:38:16.735234? 4692 net.cpp:84] relu3 <- conv3 I0721 10:38:16.735242? 4692 net.cpp:98] relu3 -> conv3 (in-place) I0721 10:38:16.735250? 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376) I0721 10:38:16.735258? 4692 net.cpp:151] relu3 needs backward computation. I0721 10:38:16.735302? 4692 net.cpp:74] Creating Layer conv4 I0721 10:38:16.735312? 4692 net.cpp:84] conv4 <- conv3 I0721 10:38:16.735321? 4692 net.cpp:110] conv4 -> conv4 I0721 10:38:16.743952? 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376) I0721 10:38:16.743988? 4692 net.cpp:151] conv4 needs backward computation. I0721 10:38:16.744000? 4692 net.cpp:74] Creating Layer relu4 I0721 10:38:16.744010? 4692 net.cpp:84] relu4 <- conv4 I0721 10:38:16.744020? 4692 net.cpp:98] relu4 -> conv4 (in-place) I0721 10:38:16.744030? 4692 net.cpp:125] Top shape: 256 384 13 13 (16613376) I0721 10:38:16.744038? 4692 net.cpp:151] relu4 needs backward computation. I0721 10:38:16.744050? 4692 net.cpp:74] Creating Layer conv5 I0721 10:38:16.744057? 4692 net.cpp:84] conv5 <- conv4 I0721 10:38:16.744067? 4692 net.cpp:110] conv5 -> conv5 I0721 10:38:16.748935? 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584) I0721 10:38:16.748955? 4692 net.cpp:151] conv5 needs backward computation. I0721 10:38:16.748965? 4692 net.cpp:74] Creating Layer relu5 I0721 10:38:16.748975? 4692 net.cpp:84] relu5 <- conv5 I0721 10:38:16.748983? 4692 net.cpp:98] relu5 -> conv5 (in-place) I0721 10:38:16.748998? 4692 net.cpp:125] Top shape: 256 256 13 13 (11075584) I0721 10:38:16.749011? 4692 net.cpp:151] relu5 needs backward computation. I0721 10:38:16.749022? 4692 net.cpp:74] Creating Layer pool5 I0721 10:38:16.749030? 4692 net.cpp:84] pool5 <- conv5 I0721 10:38:16.749039? 4692 net.cpp:110] pool5 -> pool5 I0721 10:38:16.749050? 4692 net.cpp:125] Top shape: 256 256 6 6 (2359296) I0721 10:38:16.749058? 4692 net.cpp:151] pool5 needs backward computation. I0721 10:38:16.749074? 4692 net.cpp:74] Creating Layer fc6 I0721 10:38:16.749083? 4692 net.cpp:84] fc6 <- pool5 I0721 10:38:16.749091? 4692 net.cpp:110] fc6 -> fc6 I0721 10:38:17.160079? 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576) I0721 10:38:17.160148? 4692 net.cpp:151] fc6 needs backward computation. I0721 10:38:17.160166? 4692 net.cpp:74] Creating Layer relu6 I0721 10:38:17.160177? 4692 net.cpp:84] relu6 <- fc6 I0721 10:38:17.160190? 4692 net.cpp:98] relu6 -> fc6 (in-place) I0721 10:38:17.160202? 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576) I0721 10:38:17.160212? 4692 net.cpp:151] relu6 needs backward computation. I0721 10:38:17.160222? 4692 net.cpp:74] Creating Layer drop6 I0721 10:38:17.160230? 4692 net.cpp:84] drop6 <- fc6 I0721 10:38:17.160238? 4692 net.cpp:98] drop6 -> fc6 (in-place) I0721 10:38:17.160258? 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576) I0721 10:38:17.160265? 4692 net.cpp:151] drop6 needs backward computation. I0721 10:38:17.160277? 4692 net.cpp:74] Creating Layer fc7 I0721 10:38:17.160286? 4692 net.cpp:84] fc7 <- fc6 I0721 10:38:17.160295? 4692 net.cpp:110] fc7 -> fc7 I0721 10:38:17.342094? 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576) I0721 10:38:17.342157? 4692 net.cpp:151] fc7 needs backward computation. I0721 10:38:17.342175? 4692 net.cpp:74] Creating Layer relu7 I0721 10:38:17.342185? 4692 net.cpp:84] relu7 <- fc7 I0721 10:38:17.342198? 4692 net.cpp:98] relu7 -> fc7 (in-place) I0721 10:38:17.342208? 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576) I0721 10:38:17.342217? 4692 net.cpp:151] relu7 needs backward computation. I0721 10:38:17.342228? 4692 net.cpp:74] Creating Layer drop7 I0721 10:38:17.342236? 4692 net.cpp:84] drop7 <- fc7 I0721 10:38:17.342245? 4692 net.cpp:98] drop7 -> fc7 (in-place) I0721 10:38:17.342254? 4692 net.cpp:125] Top shape: 256 4096 1 1 (1048576) I0721 10:38:17.342262? 4692 net.cpp:151] drop7 needs backward computation. I0721 10:38:17.342274? 4692 net.cpp:74] Creating Layer fc8 I0721 10:38:17.342283? 4692 net.cpp:84] fc8 <- fc7 I0721 10:38:17.342291? 4692 net.cpp:110] fc8 -> fc8 I0721 10:38:17.343199? 4692 net.cpp:125] Top shape: 256 22 1 1 (5632) I0721 10:38:17.343214? 4692 net.cpp:151] fc8 needs backward computation. I0721 10:38:17.343231? 4692 net.cpp:74] Creating Layer loss I0721 10:38:17.343240? 4692 net.cpp:84] loss <- fc8 I0721 10:38:17.343250? 4692 net.cpp:84] loss <- label I0721 10:38:17.343264? 4692 net.cpp:151] loss needs backward computation. I0721 10:38:17.343305? 4692 net.cpp:173] Collecting Learning Rate and Weight Decay. I0721 10:38:17.343327? 4692 net.cpp:166] Network initialization?done. I0721 10:38:17.343335? 4692 net.cpp:167] Memory required?forData 1073760256 |
CIFAR-10在caffe上進(jìn)行訓(xùn)練與學(xué)習(xí)
使用數(shù)據(jù)庫(kù):CIFAR-10
60000張 32X32 彩色圖像 10類(lèi),50000張訓(xùn)練,10000張測(cè)試
準(zhǔn)備
在終端運(yùn)行以下指令:
?| 1 2 3 4 | cd$CAFFE_ROOT/data/cifar10 ./get_cifar10.sh cd$CAFFE_ROOT/examples/cifar10 ./create_cifar10.sh |
其中CAFFE_ROOT是caffe-master在你機(jī)子的地址
運(yùn)行之后,將會(huì)在examples中出現(xiàn)數(shù)據(jù)庫(kù)文件./cifar10-leveldb和數(shù)據(jù)庫(kù)圖像均值二進(jìn)制文件./mean.binaryproto
模型
該CNN由卷積層,POOLing層,非線性變換層,在頂端的局部對(duì)比歸一化線性分類(lèi)器組成。該模型的定義在CAFFE_ROOT/examples/cifar10 directory’s cifar10_quick_train.prototxt中,可以進(jìn)行修改。其實(shí)后綴為prototxt很多都是用來(lái)修改配置的。
訓(xùn)練和測(cè)試
訓(xùn)練這個(gè)模型非常簡(jiǎn)單,當(dāng)我們寫(xiě)好參數(shù)設(shè)置的文件cifar10_quick_solver.prototxt和定義的文 件cifar10_quick_train.prototxt和cifar10_quick_test.prototxt后,運(yùn)行 train_quick.sh或者在終端輸入下面的命令:
?| 1 2 | cd$CAFFE_ROOT/examples/cifar10 ./train_quick.sh |
即可,train_quick.sh是一個(gè)簡(jiǎn)單的腳本,會(huì)把執(zhí)行的信息顯示出來(lái),培訓(xùn)的工具是train_net.bin,cifar10_quick_solver.prototxt作為參數(shù)。
然后出現(xiàn)類(lèi)似以下的信息:這是搭建模型的相關(guān)信息
?| 1 2 3 4 5 | I0317 21:52:48.945710 2008298256 net.cpp:74] Creating Layer conv1 I0317 21:52:48.945716 2008298256 net.cpp:84] conv1 <- data I0317 21:52:48.945725 2008298256 net.cpp:110] conv1 -> conv1 I0317 21:52:49.298691 2008298256 net.cpp:125] Top shape: 100 32 32 32 (3276800) I0317 21:52:49.298719 2008298256 net.cpp:151] conv1 needs backward computation. |
接著:
?| 1 2 3 4 | 0317 21:52:49.309370 2008298256 net.cpp:166] Network initialization?done. I0317 21:52:49.309376 2008298256 net.cpp:167] Memory required?forData 23790808 I0317 21:52:49.309422 2008298256 solver.cpp:36] Solver scaffolding?done. I0317 21:52:49.309447 2008298256 solver.cpp:47] Solving CIFAR10_quick_train |
之后,訓(xùn)練開(kāi)始
?| 1 2 3 4 5 6 | I0317 21:53:12.179772 2008298256 solver.cpp:208] Iteration 100, lr = 0.001 I0317 21:53:12.185698 2008298256 solver.cpp:65] Iteration 100, loss = 1.73643 ... I0317 21:54:41.150030 2008298256 solver.cpp:87] Iteration 500, Testing net I0317 21:54:47.129461 2008298256 solver.cpp:114] Test score?#0: 0.5504 I0317 21:54:47.129500 2008298256 solver.cpp:114] Test score?#1: 1.27805 |
其中每100次迭代次數(shù)顯示一次訓(xùn)練時(shí)lr(learningrate),和loss(訓(xùn)練損失函數(shù)),每500次測(cè)試一次,輸出score 0(準(zhǔn)確率)和score 1(測(cè)試損失函數(shù))
當(dāng)5000次迭代之后,正確率約為75%,模型的參數(shù)存儲(chǔ)在二進(jìn)制protobuf格式在cifar10_quick_iter_5000
然后,這個(gè)模型就可以用來(lái)運(yùn)行在新數(shù)據(jù)上了。
其他
另外,更改cifar*solver.prototxt文件可以使用CPU訓(xùn)練,
?| 1 2 | # solver mode: CPU or GPU solver_mode: CPU |
可以看看CPU和GPU訓(xùn)練的差別。
總結(jié)
以上是生活随笔為你收集整理的深度学习caffe教程的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 音视频同步系列文章之------时间戳与
- 下一篇: 重磅干货整理】机器学习(Machine