日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

九大排序算法,你会几个?

發(fā)布時(shí)間:2025/7/14 编程问答 22 豆豆
生活随笔 收集整理的這篇文章主要介紹了 九大排序算法,你会几个? 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

概述排序有內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。

我們這里說說八大排序就是內(nèi)部排序。

????

????當(dāng)n較大,則應(yīng)采用時(shí)間復(fù)雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸并排序序。

?? 快速排序:是目前基于比較的內(nèi)部排序中被認(rèn)為是最好的方法,當(dāng)待排序的關(guān)鍵字是隨機(jī)分布時(shí),快速排序的平均時(shí)間最短;

?

1.插入排序—直接插入排序(Straight Insertion Sort)

基本思想:

將一個(gè)記錄插入到已排序好的有序表中,從而得到一個(gè)新,記錄數(shù)增1的有序表。即:先將序列的第1個(gè)記錄看成是一個(gè)有序的子序列,然后從第2個(gè)記錄逐個(gè)進(jìn)行插入,直至整個(gè)序列有序?yàn)橹埂?/p>

要點(diǎn):設(shè)立哨兵,作為臨時(shí)存儲(chǔ)和判斷數(shù)組邊界之用。

直接插入排序示例:

?

如果碰見一個(gè)和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后順序沒有改變,從原無序序列出去的順序就是排好序后的順序,所以插入排序是穩(wěn)定的。

算法的實(shí)現(xiàn):

[cpp] view plaincopyprint?
  • void?print(int?a[],?int?n?,int?i){??
  • ????cout<<i?<<":";??
  • ????for(int?j=?0;?j<8;?j++){??
  • ????????cout<<a[j]?<<"?";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • ??
  • ??
  • void?InsertSort(int?a[],?int?n)??
  • {??
  • ????for(int?i=?1;?i<n;?i++){??
  • ????????if(a[i]?<?a[i-1]){???????????????//若第i個(gè)元素大于i-1元素,直接插入。小于的話,移動(dòng)有序表后插入??
  • ????????????int?j=?i-1;???
  • ????????????int?x?=?a[i];????????//復(fù)制為哨兵,即存儲(chǔ)待排序元素??
  • ????????????a[i]?=?a[i-1];???????????//先后移一個(gè)元素??
  • ????????????while(x?<?a[j]){??//查找在有序表的插入位置??
  • ????????????????a[j+1]?=?a[j];??
  • ????????????????j--;?????????//元素后移??
  • ????????????}??
  • ????????????a[j+1]?=?x;??????//插入到正確位置??
  • ????????}??
  • ????????print(a,n,i);???????????//打印每趟排序的結(jié)果??
  • ????}??
  • ??????
  • }??
  • ??
  • int?main(){??
  • ????int?a[8]?=?{3,1,5,7,2,4,9,6};??
  • ????InsertSort(a,8);??
  • ????print(a,8,8);??
  • }??
  • void print(int a[], int n ,int i){cout<<i <<":";for(int j= 0; j<8; j++){cout<<a[j] <<" ";}cout<<endl; }void InsertSort(int a[], int n) {for(int i= 1; i<n; i++){if(a[i] < a[i-1]){ //若第i個(gè)元素大于i-1元素,直接插入。小于的話,移動(dòng)有序表后插入int j= i-1; int x = a[i]; //復(fù)制為哨兵,即存儲(chǔ)待排序元素a[i] = a[i-1]; //先后移一個(gè)元素while(x < a[j]){ //查找在有序表的插入位置a[j+1] = a[j];j--; //元素后移}a[j+1] = x; //插入到正確位置}print(a,n,i); //打印每趟排序的結(jié)果}}int main(){int a[8] = {3,1,5,7,2,4,9,6};InsertSort(a,8);print(a,8,8); }

    效率:

    時(shí)間復(fù)雜度:O(n^2).

    其他的插入排序有二分插入排序,2-路插入排序。

    ?

    ?2. 插入排序—希爾排序(Shell`s Sort)

    希爾排序是1959 年由D.L.Shell 提出來的,相對直接排序有較大的改進(jìn)。希爾排序又叫縮小增量排序

    基本思想:

    先將整個(gè)待排序的記錄序列分割成為若干子序列分別進(jìn)行直接插入排序,待整個(gè)序列中的記錄“基本有序”時(shí),再對全體記錄進(jìn)行依次直接插入排序。

    操作方法:

  • 選擇一個(gè)增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列個(gè)數(shù)k,對序列進(jìn)行k 趟排序;
  • 每趟排序,根據(jù)對應(yīng)的增量ti,將待排序列分割成若干長度為m 的子序列,分別對各子表進(jìn)行直接插入排序。僅增量因子為1 時(shí),整個(gè)序列作為一個(gè)表來處理,表長度即為整個(gè)序列的長度。
  • 希爾排序的示例:

    ?

    算法實(shí)現(xiàn):

    ?

    我們簡單處理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n為要排序數(shù)的個(gè)數(shù)

    即:先將要排序的一組記錄按某個(gè)增量dn/2,n為要排序數(shù)的個(gè)數(shù))分成若干組子序列,每組中記錄的下標(biāo)相差d.對每組中全部元素進(jìn)行直接插入排序,然后再用一個(gè)較小的增量(d/2)對它進(jìn)行分組,在每組中再進(jìn)行直接插入排序。繼續(xù)不斷縮小增量直至為1,最后使用直接插入排序完成排序。

    [cpp] view plaincopyprint?
  • void?print(int?a[],?int?n?,int?i){??
  • ????cout<<i?<<":";??
  • ????for(int?j=?0;?j<8;?j++){??
  • ????????cout<<a[j]?<<"?";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • /**?
  • ?*?直接插入排序的一般形式?
  • ?*?
  • ?*?@param?int?dk?縮小增量,如果是直接插入排序,dk=1?
  • ?*?
  • ?*/??
  • ??
  • void?ShellInsertSort(int?a[],?int?n,?int?dk)??
  • {??
  • ????for(int?i=?dk;?i<n;?++i){??
  • ????????if(a[i]?<?a[i-dk]){??????????//若第i個(gè)元素大于i-1元素,直接插入。小于的話,移動(dòng)有序表后插入??
  • ????????????int?j?=?i-dk;?????
  • ????????????int?x?=?a[i];???????????//復(fù)制為哨兵,即存儲(chǔ)待排序元素??
  • ????????????a[i]?=?a[i-dk];?????????//首先后移一個(gè)元素??
  • ????????????while(x?<?a[j]){?????//查找在有序表的插入位置??
  • ????????????????a[j+dk]?=?a[j];??
  • ????????????????j?-=?dk;?????????????//元素后移??
  • ????????????}??
  • ????????????a[j+dk]?=?x;????????????//插入到正確位置??
  • ????????}??
  • ????????print(a,?n,i?);??
  • ????}??
  • ??????
  • }??
  • ??
  • /**?
  • ?*?先按增量d(n/2,n為要排序數(shù)的個(gè)數(shù)進(jìn)行希爾排序?
  • ?*?
  • ?*/??
  • void?shellSort(int?a[],?int?n){??
  • ??
  • ????int?dk?=?n/2;??
  • ????while(?dk?>=?1??){??
  • ????????ShellInsertSort(a,?n,?dk);??
  • ????????dk?=?dk/2;??
  • ????}??
  • }??
  • int?main(){??
  • ????int?a[8]?=?{3,1,5,7,2,4,9,6};??
  • ????//ShellInsertSort(a,8,1);?//直接插入排序??
  • ????shellSort(a,8);???????????//希爾插入排序??
  • ????print(a,8,8);??
  • }??
  • void print(int a[], int n ,int i){cout<<i <<":";for(int j= 0; j<8; j++){cout<<a[j] <<" ";}cout<<endl; } /*** 直接插入排序的一般形式** @param int dk 縮小增量,如果是直接插入排序,dk=1**/void ShellInsertSort(int a[], int n, int dk) {for(int i= dk; i<n; ++i){if(a[i] < a[i-dk]){ //若第i個(gè)元素大于i-1元素,直接插入。小于的話,移動(dòng)有序表后插入int j = i-dk; int x = a[i]; //復(fù)制為哨兵,即存儲(chǔ)待排序元素a[i] = a[i-dk]; //首先后移一個(gè)元素while(x < a[j]){ //查找在有序表的插入位置a[j+dk] = a[j];j -= dk; //元素后移}a[j+dk] = x; //插入到正確位置}print(a, n,i );}}/*** 先按增量d(n/2,n為要排序數(shù)的個(gè)數(shù)進(jìn)行希爾排序**/ void shellSort(int a[], int n){int dk = n/2;while( dk >= 1 ){ShellInsertSort(a, n, dk);dk = dk/2;} } int main(){int a[8] = {3,1,5,7,2,4,9,6};//ShellInsertSort(a,8,1); //直接插入排序shellSort(a,8); //希爾插入排序print(a,8,8); }

    ?

    希爾排序時(shí)效分析很難,關(guān)鍵碼的比較次數(shù)與記錄移動(dòng)次數(shù)依賴于增量因子序列d的選取,特定情況下可以準(zhǔn)確估算出關(guān)鍵碼的比較次數(shù)和記錄的移動(dòng)次數(shù)。目前還沒有人給出選取最好的增量因子序列的方法。增量因子序列可以有各種取法,有取奇數(shù)的,也有取質(zhì)數(shù)的,但需要注意:增量因子中除1 外沒有公因子,且最后一個(gè)增量因子必須為1。希爾排序方法是一個(gè)不穩(wěn)定的排序方法。

    ?

    3. 選擇排序—簡單選擇排序(Simple Selection Sort)

    基本思想:

    在要排序的一組數(shù)中,選出最小(或者最大)的個(gè)數(shù)與第1個(gè)位置的數(shù)交換;然后在剩下的數(shù)當(dāng)中再找最小(或者最大)的與第2個(gè)位置的數(shù)交換,依次類推,直到第n-1個(gè)元素(倒數(shù)第二個(gè)數(shù))和第n個(gè)元素(最后個(gè)數(shù))比較為止。

    簡單選擇排序的示例:

    ?

    操作方法:

    第一趟,從n 個(gè)記錄中找出關(guān)鍵碼最小的記錄與第一個(gè)記錄交換;

    第二趟,從第二個(gè)記錄開始的n-1 個(gè)記錄中再選出關(guān)鍵碼最小的記錄與第二個(gè)記錄交換;

    以此類推.....

    第i 趟,則從第i 個(gè)記錄開始的n-i+1 個(gè)記錄中選出關(guān)鍵碼最小的記錄與第i 個(gè)記錄交換,

    直到整個(gè)序列按關(guān)鍵碼有序。

    算法實(shí)現(xiàn):

    [cpp] view plaincopyprint?
  • void?print(int?a[],?int?n?,int?i){??
  • ????cout<<"第"<<i+1?<<"趟?:?";??
  • ????for(int?j=?0;?j<8;?j++){??
  • ????????cout<<a[j]?<<"??";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • /**?
  • ?*?數(shù)組的最小值?
  • ?*?
  • ?*?@return?int?數(shù)組的鍵值?
  • ?*/??
  • int?SelectMinKey(int?a[],?int?n,?int?i)??
  • {??
  • ????int?k?=?i;??
  • ????for(int?j=i+1?;j<?n;?++j)?{??
  • ????????if(a[k]?>?a[j])?k?=?j;??
  • ????}??
  • ????return?k;??
  • }??
  • ??
  • /**?
  • ?*?選擇排序?
  • ?*?
  • ?*/??
  • void?selectSort(int?a[],?int?n){??
  • ????int?key,?tmp;??
  • ????for(int?i?=?0;?i<?n;?++i)?{??
  • ????????key?=?SelectMinKey(a,?n,i);???????????//選擇最小的元素??
  • ????????if(key?!=?i){??
  • ????????????tmp?=?a[i];??a[i]?=?a[key];?a[key]?=?tmp;?//最小元素與第i位置元素互換??
  • ????????}??
  • ????????print(a,??n?,?i);??
  • ????}??
  • }??
  • int?main(){??
  • ????int?a[8]?=?{3,1,5,7,2,4,9,6};??
  • ????cout<<"初始值:";??
  • ????for(int?j=?0;?j<8;?j++){??
  • ????????cout<<a[j]?<<"??";??
  • ????}??
  • ????cout<<endl<<endl;??
  • ????selectSort(a,?8);??
  • ????print(a,8,8);??
  • }??
  • void print(int a[], int n ,int i){cout<<"第"<<i+1 <<"趟 : ";for(int j= 0; j<8; j++){cout<<a[j] <<" ";}cout<<endl; } /*** 數(shù)組的最小值** @return int 數(shù)組的鍵值*/ int SelectMinKey(int a[], int n, int i) {int k = i;for(int j=i+1 ;j< n; ++j) {if(a[k] > a[j]) k = j;}return k; }/*** 選擇排序**/ void selectSort(int a[], int n){int key, tmp;for(int i = 0; i< n; ++i) {key = SelectMinKey(a, n,i); //選擇最小的元素if(key != i){tmp = a[i]; a[i] = a[key]; a[key] = tmp; //最小元素與第i位置元素互換}print(a, n , i);} } int main(){int a[8] = {3,1,5,7,2,4,9,6};cout<<"初始值:";for(int j= 0; j<8; j++){cout<<a[j] <<" ";}cout<<endl<<endl;selectSort(a, 8);print(a,8,8); }

    ?簡單選擇排序的改進(jìn)——二元選擇排序

    簡單選擇排序,每趟循環(huán)只能確定一個(gè)元素排序后的定位。我們可以考慮改進(jìn)為每趟循環(huán)確定兩個(gè)元素(當(dāng)前趟最大和最小記錄)的位置,從而減少排序所需的循環(huán)次數(shù)。改進(jìn)后對n個(gè)數(shù)據(jù)進(jìn)行排序,最多只需進(jìn)行[n/2]趟循環(huán)即可。具體實(shí)現(xiàn)如下:

    [cpp] view plaincopyprint?
  • void?SelectSort(int?r[],int?n)?{??
  • ????int?i?,j?,?min?,max,?tmp;??
  • ????for?(i=1?;i?<=?n/2;i++)?{????
  • ????????//?做不超過n/2趟選擇排序???
  • ????????min?=?i;?max?=?i?;?//分別記錄最大和最小關(guān)鍵字記錄位置??
  • ????????for?(j=?i+1;?j<=?n-i;?j++)?{??
  • ????????????if?(r[j]?>?r[max])?{???
  • ????????????????max?=?j?;?continue?;???
  • ????????????}????
  • ????????????if?(r[j]<?r[min])?{???
  • ????????????????min?=?j?;???
  • ????????????}?????
  • ??????}????
  • ??????//該交換操作還可分情況討論以提高效率??
  • ??????tmp?=?r[i-1];?r[i-1]?=?r[min];?r[min]?=?tmp;??
  • ??????tmp?=?r[n-i];?r[n-i]?=?r[max];?r[max]?=?tmp;???
  • ??
  • ????}???
  • }??
  • void SelectSort(int r[],int n) {int i ,j , min ,max, tmp;for (i=1 ;i <= n/2;i++) { // 做不超過n/2趟選擇排序 min = i; max = i ; //分別記錄最大和最小關(guān)鍵字記錄位置for (j= i+1; j<= n-i; j++) {if (r[j] > r[max]) { max = j ; continue ; } if (r[j]< r[min]) { min = j ; } } //該交換操作還可分情況討論以提高效率tmp = r[i-1]; r[i-1] = r[min]; r[min] = tmp;tmp = r[n-i]; r[n-i] = r[max]; r[max] = tmp; } }

    4. 選擇排序—堆排序(Heap Sort)

    堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進(jìn)。

    基本思想:

    堆的定義如下:具有n個(gè)元素的序列(k1,k2,...,kn),當(dāng)且僅當(dāng)滿足

    時(shí)稱之為堆。由堆的定義可以看出,堆頂元素(即第一個(gè)元素)必為最小項(xiàng)(小頂堆)。 若以一維數(shù)組存儲(chǔ)一個(gè)堆,則堆對應(yīng)一棵完全二叉樹,且所有非葉結(jié)點(diǎn)的值均不大于(或不小于)其子女的值,根結(jié)點(diǎn)(堆頂元素)的值是最小(或最大)的。如:

    (a)大頂堆序列:(96, 83,27,38,11,09)

    ? (b)? 小頂堆序列:(12,36,24,85,47,30,53,91)

    ?

    初始時(shí)把要排序的n個(gè)數(shù)的序列看作是一棵順序存儲(chǔ)的二叉樹(一維數(shù)組存儲(chǔ)二叉樹),調(diào)整它們的存儲(chǔ)序,使之成為一個(gè)堆,將堆頂元素輸出,得到n 個(gè)元素中最小(或最大)的元素,這時(shí)堆的根節(jié)點(diǎn)的數(shù)最小(或者最大)。然后對前面(n-1)個(gè)元素重新調(diào)整使之成為堆,輸出堆頂元素,得到n 個(gè)元素中次小(或次大)的元素。依此類推,直到只有兩個(gè)節(jié)點(diǎn)的堆,并對它們作交換,最后得到有n個(gè)節(jié)點(diǎn)的有序序列。稱這個(gè)過程為堆排序

    因此,實(shí)現(xiàn)堆排序需解決兩個(gè)問題: 1. 如何將n 個(gè)待排序的數(shù)建成堆; 2. 輸出堆頂元素后,怎樣調(diào)整剩余n-1 個(gè)元素,使其成為一個(gè)新堆。

    首先討論第二個(gè)問題:輸出堆頂元素后,對剩余n-1元素重新建成堆的調(diào)整過程。 調(diào)整小頂堆的方法:

    1)設(shè)有m 個(gè)元素的堆,輸出堆頂元素后,剩下m-1 個(gè)元素。將堆底元素送入堆頂((最后一個(gè)元素與堆頂進(jìn)行交換),堆被破壞,其原因僅是根結(jié)點(diǎn)不滿足堆的性質(zhì)。

    2)將根結(jié)點(diǎn)與左、右子樹中較小元素的進(jìn)行交換。

    3)若與左子樹交換:如果左子樹堆被破壞,即左子樹的根結(jié)點(diǎn)不滿足堆的性質(zhì),則重復(fù)方法 (2).

    4)若與右子樹交換,如果右子樹堆被破壞,即右子樹的根結(jié)點(diǎn)不滿足堆的性質(zhì)。則重復(fù)方法 (2).

    5)繼續(xù)對不滿足堆性質(zhì)的子樹進(jìn)行上述交換操作,直到葉子結(jié)點(diǎn),堆被建成。

    稱這個(gè)自根結(jié)點(diǎn)到葉子結(jié)點(diǎn)的調(diào)整過程為篩選。如圖:

    再討論對n 個(gè)元素初始建堆的過程。 建堆方法:對初始序列建堆的過程,就是一個(gè)反復(fù)進(jìn)行篩選的過程。

    1)n 個(gè)結(jié)點(diǎn)的完全二叉樹,則最后一個(gè)結(jié)點(diǎn)是第個(gè)結(jié)點(diǎn)的子樹。

    2)篩選從第個(gè)結(jié)點(diǎn)為根的子樹開始,該子樹成為堆。

    3)之后向前依次對各結(jié)點(diǎn)為根的子樹進(jìn)行篩選,使之成為堆,直到根結(jié)點(diǎn)。

    如圖建堆初始過程:無序序列:(49,38,65,97,76,13,27,49) ?????????????????????????????

    ?????????????????????????????

    ?

    ?算法的實(shí)現(xiàn):

    從算法描述來看,堆排序需要兩個(gè)過程,一是建立堆,二是堆頂與堆的最后一個(gè)元素交換位置。所以堆排序有兩個(gè)函數(shù)組成。一是建堆的滲透函數(shù),二是反復(fù)調(diào)用滲透函數(shù)實(shí)現(xiàn)排序的函數(shù)。

    [cpp] view plaincopyprint?
  • void?print(int?a[],?int?n){??
  • ????for(int?j=?0;?j<n;?j++){??
  • ????????cout<<a[j]?<<"??";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • ??
  • ??
  • ??
  • /**?
  • ?*?已知H[s…m]除了H[s]?外均滿足堆的定義?
  • ?*?調(diào)整H[s],使其成為大頂堆.即將對第s個(gè)結(jié)點(diǎn)為根的子樹篩選,??
  • ?*?
  • ?*?@param?H是待調(diào)整的堆數(shù)組?
  • ?*?@param?s是待調(diào)整的數(shù)組元素的位置?
  • ?*?@param?length是數(shù)組的長度?
  • ?*?
  • ?*/??
  • void?HeapAdjust(int?H[],int?s,?int?length)??
  • {??
  • ????int?tmp??=?H[s];??
  • ????int?child?=?2*s+1;?//左孩子結(jié)點(diǎn)的位置。(i+1?為當(dāng)前調(diào)整結(jié)點(diǎn)的右孩子結(jié)點(diǎn)的位置)??
  • ????while?(child?<?length)?{??
  • ????????if(child+1?<length?&&?H[child]<H[child+1])?{?//?如果右孩子大于左孩子(找到比當(dāng)前待調(diào)整結(jié)點(diǎn)大的孩子結(jié)點(diǎn))??
  • ????????????++child?;??
  • ????????}??
  • ????????if(H[s]<H[child])?{??//?如果較大的子結(jié)點(diǎn)大于父結(jié)點(diǎn)??
  • ????????????H[s]?=?H[child];?//?那么把較大的子結(jié)點(diǎn)往上移動(dòng),替換它的父結(jié)點(diǎn)??
  • ????????????s?=?child;???????//?重新設(shè)置s?,即待調(diào)整的下一個(gè)結(jié)點(diǎn)的位置??
  • ????????????child?=?2*s+1;??
  • ????????}??else?{????????????//?如果當(dāng)前待調(diào)整結(jié)點(diǎn)大于它的左右孩子,則不需要調(diào)整,直接退出??
  • ?????????????break;??
  • ????????}??
  • ????????H[s]?=?tmp;?????????//?當(dāng)前待調(diào)整的結(jié)點(diǎn)放到比其大的孩子結(jié)點(diǎn)位置上??
  • ????}??
  • ????print(H,length);??
  • }??
  • ??
  • ??
  • /**?
  • ?*?初始堆進(jìn)行調(diào)整?
  • ?*?將H[0..length-1]建成堆?
  • ?*?調(diào)整完之后第一個(gè)元素是序列的最小的元素?
  • ?*/??
  • void?BuildingHeap(int?H[],?int?length)??
  • {???
  • ????//最后一個(gè)有孩子的節(jié)點(diǎn)的位置?i=??(length?-1)?/?2??
  • ????for?(int?i?=?(length?-1)?/?2?;?i?>=?0;?--i)??
  • ????????HeapAdjust(H,i,length);??
  • }??
  • /**?
  • ?*?堆排序算法?
  • ?*/??
  • void?HeapSort(int?H[],int?length)??
  • {??
  • ????//初始堆??
  • ????BuildingHeap(H,?length);??
  • ????//從最后一個(gè)元素開始對序列進(jìn)行調(diào)整??
  • ????for?(int?i?=?length?-?1;?i?>?0;?--i)??
  • ????{??
  • ????????//交換堆頂元素H[0]和堆中最后一個(gè)元素??
  • ????????int?temp?=?H[i];?H[i]?=?H[0];?H[0]?=?temp;??
  • ????????//每次交換堆頂元素和堆中最后一個(gè)元素之后,都要對堆進(jìn)行調(diào)整??
  • ????????HeapAdjust(H,0,i);??
  • ??}??
  • }???
  • ??
  • int?main(){??
  • ????int?H[10]?=?{3,1,5,7,2,4,9,6,10,8};??
  • ????cout<<"初始值:";??
  • ????print(H,10);??
  • ????HeapSort(H,10);??
  • ????//selectSort(a,?8);??
  • ????cout<<"結(jié)果:";??
  • ????print(H,10);??
  • ??
  • }??
  • void print(int a[], int n){for(int j= 0; j<n; j++){cout<<a[j] <<" ";}cout<<endl; }/*** 已知H[s…m]除了H[s] 外均滿足堆的定義* 調(diào)整H[s],使其成為大頂堆.即將對第s個(gè)結(jié)點(diǎn)為根的子樹篩選, ** @param H是待調(diào)整的堆數(shù)組* @param s是待調(diào)整的數(shù)組元素的位置* @param length是數(shù)組的長度**/ void HeapAdjust(int H[],int s, int length) {int tmp = H[s];int child = 2*s+1; //左孩子結(jié)點(diǎn)的位置。(i+1 為當(dāng)前調(diào)整結(jié)點(diǎn)的右孩子結(jié)點(diǎn)的位置)while (child < length) {if(child+1 <length && H[child]<H[child+1]) { // 如果右孩子大于左孩子(找到比當(dāng)前待調(diào)整結(jié)點(diǎn)大的孩子結(jié)點(diǎn))++child ;}if(H[s]<H[child]) { // 如果較大的子結(jié)點(diǎn)大于父結(jié)點(diǎn)H[s] = H[child]; // 那么把較大的子結(jié)點(diǎn)往上移動(dòng),替換它的父結(jié)點(diǎn)s = child; // 重新設(shè)置s ,即待調(diào)整的下一個(gè)結(jié)點(diǎn)的位置child = 2*s+1;} else { // 如果當(dāng)前待調(diào)整結(jié)點(diǎn)大于它的左右孩子,則不需要調(diào)整,直接退出break;}H[s] = tmp; // 當(dāng)前待調(diào)整的結(jié)點(diǎn)放到比其大的孩子結(jié)點(diǎn)位置上}print(H,length); }/*** 初始堆進(jìn)行調(diào)整* 將H[0..length-1]建成堆* 調(diào)整完之后第一個(gè)元素是序列的最小的元素*/ void BuildingHeap(int H[], int length) { //最后一個(gè)有孩子的節(jié)點(diǎn)的位置 i= (length -1) / 2for (int i = (length -1) / 2 ; i >= 0; --i)HeapAdjust(H,i,length); } /*** 堆排序算法*/ void HeapSort(int H[],int length) {//初始堆BuildingHeap(H, length);//從最后一個(gè)元素開始對序列進(jìn)行調(diào)整for (int i = length - 1; i > 0; --i){//交換堆頂元素H[0]和堆中最后一個(gè)元素int temp = H[i]; H[i] = H[0]; H[0] = temp;//每次交換堆頂元素和堆中最后一個(gè)元素之后,都要對堆進(jìn)行調(diào)整HeapAdjust(H,0,i);} } int main(){int H[10] = {3,1,5,7,2,4,9,6,10,8};cout<<"初始值:";print(H,10);HeapSort(H,10);//selectSort(a, 8);cout<<"結(jié)果:";print(H,10);}

    分析:

    設(shè)樹深度為k,。從根到葉的篩選,元素比較次數(shù)至多2(k-1)次,交換記錄至多k 次。所以,在建好堆后,排序過程中的篩選次數(shù)不超過下式:?

    ???????????????????????????????

    而建堆時(shí)的比較次數(shù)不超過4n 次,因此堆排序最壞情況下,時(shí)間復(fù)雜度也為:O(nlogn )。

    ?

    5. 交換排序—冒泡排序(Bubble Sort)

    基本思想:

    在要排序的一組數(shù)中,對當(dāng)前還未排好序的范圍內(nèi)的全部數(shù),自上而下對相鄰的兩個(gè)數(shù)依次進(jìn)行比較和調(diào)整,讓較大的數(shù)往下沉,較小的往上冒。即:每當(dāng)兩相鄰的數(shù)比較后發(fā)現(xiàn)它們的排序與排序要求相反時(shí),就將它們互換。

    冒泡排序的示例:

    ?

    算法的實(shí)現(xiàn):

    ?

    [cpp] view plaincopyprint?
  • void?bubbleSort(int?a[],?int?n){??
  • ????for(int?i?=0?;?i<?n-1;?++i)?{??
  • ????????for(int?j?=?0;?j?<?n-i-1;?++j)?{??
  • ????????????if(a[j]?>?a[j+1])??
  • ????????????{??
  • ????????????????int?tmp?=?a[j]?;?a[j]?=?a[j+1]?;??a[j+1]?=?tmp;??
  • ????????????}??
  • ????????}??
  • ????}??
  • }??
  • void bubbleSort(int a[], int n){for(int i =0 ; i< n-1; ++i) {for(int j = 0; j < n-i-1; ++j) {if(a[j] > a[j+1]){int tmp = a[j] ; a[j] = a[j+1] ; a[j+1] = tmp;}}} }

    冒泡排序算法的改進(jìn)

    對冒泡排序常見的改進(jìn)方法是加入一標(biāo)志性變量exchange,用于標(biāo)志某一趟排序過程中是否有數(shù)據(jù)交換,如果進(jìn)行某一趟排序時(shí)并沒有進(jìn)行數(shù)據(jù)交換,則說明數(shù)據(jù)已經(jīng)按要求排列好,可立即結(jié)束排序,避免不必要的比較過程。本文再提供以下兩種改進(jìn)算法:

    1.設(shè)置一標(biāo)志性變量pos,用于記錄每趟排序中最后一次進(jìn)行交換的位置。由于pos位置之后的記錄均已交換到位,故在進(jìn)行下一趟排序時(shí)只要掃描到pos位置即可。

    改進(jìn)后算法如下:

    [cpp] view plaincopyprint?
  • void?Bubble_1?(?int?r[],?int?n)?{??
  • ????int?i=?n?-1;??//初始時(shí),最后位置保持不變??
  • ????while?(?i>?0)?{???
  • ????????int?pos=?0;?//每趟開始時(shí),無記錄交換??
  • ????????for?(int?j=?0;?j<?i;?j++)??
  • ????????????if?(r[j]>?r[j+1])?{??
  • ????????????????pos=?j;?//記錄交換的位置???
  • ????????????????int?tmp?=?r[j];?r[j]=r[j+1];r[j+1]=tmp;??
  • ????????????}???
  • ????????i=?pos;?//為下一趟排序作準(zhǔn)備??
  • ?????}???
  • }????
  • void Bubble_1 ( int r[], int n) {int i= n -1; //初始時(shí),最后位置保持不變while ( i> 0) { int pos= 0; //每趟開始時(shí),無記錄交換for (int j= 0; j< i; j++)if (r[j]> r[j+1]) {pos= j; //記錄交換的位置 int tmp = r[j]; r[j]=r[j+1];r[j+1]=tmp;} i= pos; //為下一趟排序作準(zhǔn)備} }

    2.傳統(tǒng)冒泡排序中每一趟排序操作只能找到一個(gè)最大值或最小值,我們考慮利用在每趟排序中進(jìn)行正向和反向兩遍冒泡的方法一次可以得到兩個(gè)最終值(最大者和最小者) , 從而使排序趟數(shù)幾乎減少了一半。

    改進(jìn)后的算法實(shí)現(xiàn)為:

    [cpp] view plaincopyprint?
  • void?Bubble_2?(?int?r[],?int?n){??
  • ????int?low?=?0;???
  • ????int?high=?n?-1;?//設(shè)置變量的初始值??
  • ????int?tmp,j;??
  • ????while?(low?<?high)?{??
  • ????????for?(j=?low;?j<?high;?++j)?//正向冒泡,找到最大者??
  • ????????????if?(r[j]>?r[j+1])?{??
  • ????????????????tmp?=?r[j];?r[j]=r[j+1];r[j+1]=tmp;??
  • ????????????}???
  • ????????--high;?????????????????//修改high值,?前移一位??
  • ????????for?(?j=high;?j>low;?--j)?//反向冒泡,找到最小者??
  • ????????????if?(r[j]<r[j-1])?{??
  • ????????????????tmp?=?r[j];?r[j]=r[j-1];r[j-1]=tmp;??
  • ????????????}??
  • ????????++low;??????????????????//修改low值,后移一位??
  • ????}???
  • }???
  • void Bubble_2 ( int r[], int n){int low = 0; int high= n -1; //設(shè)置變量的初始值int tmp,j;while (low < high) {for (j= low; j< high; ++j) //正向冒泡,找到最大者if (r[j]> r[j+1]) {tmp = r[j]; r[j]=r[j+1];r[j+1]=tmp;} --high; //修改high值, 前移一位for ( j=high; j>low; --j) //反向冒泡,找到最小者if (r[j]<r[j-1]) {tmp = r[j]; r[j]=r[j-1];r[j-1]=tmp;}++low; //修改low值,后移一位} }

    6. 交換排序—快速排序(Quick Sort)

    基本思想:

    1)選擇一個(gè)基準(zhǔn)元素,通常選擇第一個(gè)元素或者最后一個(gè)元素,

    2)通過一趟排序講待排序的記錄分割成獨(dú)立的兩部分,其中一部分記錄的元素值均比基準(zhǔn)元素值小。另一部分記錄的?元素值比基準(zhǔn)值大。

    3)此時(shí)基準(zhǔn)元素在其排好序后的正確位置

    4)然后分別對這兩部分記錄用同樣的方法繼續(xù)進(jìn)行排序,直到整個(gè)序列有序。

    快速排序的示例:

    (a)一趟排序的過程:

    (b)排序的全過程

    算法的實(shí)現(xiàn):

    ?遞歸實(shí)現(xiàn):

    [cpp] view plaincopyprint?
  • void?print(int?a[],?int?n){??
  • ????for(int?j=?0;?j<n;?j++){??
  • ????????cout<<a[j]?<<"??";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • ??
  • void?swap(int?*a,?int?*b)??
  • {??
  • ????int?tmp?=?*a;??
  • ????*a?=?*b;??
  • ????*b?=?tmp;??
  • }??
  • ??
  • int?partition(int?a[],?int?low,?int?high)??
  • {??
  • ????int?privotKey?=?a[low];?????????????????????????????//基準(zhǔn)元素??
  • ????while(low?<?high){???????????????????????????????????//從表的兩端交替地向中間掃描??
  • ????????while(low?<?high??&&?a[high]?>=?privotKey)?--high;??//從high?所指位置向前搜索,至多到low+1?位置。將比基準(zhǔn)元素小的交換到低端??
  • ????????swap(&a[low],?&a[high]);??
  • ????????while(low?<?high??&&?a[low]?<=?privotKey?)?++low;??
  • ????????swap(&a[low],?&a[high]);??
  • ????}??
  • ????print(a,10);??
  • ????return?low;??
  • }??
  • ??
  • ??
  • void?quickSort(int?a[],?int?low,?int?high){??
  • ????if(low?<?high){??
  • ????????int?privotLoc?=?partition(a,??low,??high);??//將表一分為二??
  • ????????quickSort(a,??low,??privotLoc?-1);??????????//遞歸對低子表遞歸排序??
  • ????????quickSort(a,???privotLoc?+?1,?high);????????//遞歸對高子表遞歸排序??
  • ????}??
  • }??
  • ??
  • int?main(){??
  • ????int?a[10]?=?{3,1,5,7,2,4,9,6,10,8};??
  • ????cout<<"初始值:";??
  • ????print(a,10);??
  • ????quickSort(a,0,9);??
  • ????cout<<"結(jié)果:";??
  • ????print(a,10);??
  • ??
  • }??
  • void print(int a[], int n){for(int j= 0; j<n; j++){cout<<a[j] <<" ";}cout<<endl; }void swap(int *a, int *b) {int tmp = *a;*a = *b;*b = tmp; }int partition(int a[], int low, int high) {int privotKey = a[low]; //基準(zhǔn)元素while(low < high){ //從表的兩端交替地向中間掃描while(low < high && a[high] >= privotKey) --high; //從high 所指位置向前搜索,至多到low+1 位置。將比基準(zhǔn)元素小的交換到低端swap(&a[low], &a[high]);while(low < high && a[low] <= privotKey ) ++low;swap(&a[low], &a[high]);}print(a,10);return low; }void quickSort(int a[], int low, int high){if(low < high){int privotLoc = partition(a, low, high); //將表一分為二quickSort(a, low, privotLoc -1); //遞歸對低子表遞歸排序quickSort(a, privotLoc + 1, high); //遞歸對高子表遞歸排序} }int main(){int a[10] = {3,1,5,7,2,4,9,6,10,8};cout<<"初始值:";print(a,10);quickSort(a,0,9);cout<<"結(jié)果:";print(a,10);}

    分析:

    快速排序是通常被認(rèn)為在同數(shù)量級(O(nlog2n))的排序方法中平均性能最好的。但若初始序列按關(guān)鍵碼有序或基本有序時(shí),快排序反而蛻化為冒泡排序。為改進(jìn)之,通常以“三者取中法”來選取基準(zhǔn)記錄,即將排序區(qū)間的兩個(gè)端點(diǎn)與中點(diǎn)三個(gè)記錄關(guān)鍵碼居中的調(diào)整為支點(diǎn)記錄。快速排序是一個(gè)不穩(wěn)定的排序方法。

    ? 快速排序的改進(jìn)

    在本改進(jìn)算法中,只對長度大于k的子序列遞歸調(diào)用快速排序,讓原序列基本有序,然后再對整個(gè)基本有序序列用插入排序算法排序。實(shí)踐證明,改進(jìn)后的算法時(shí)間復(fù)雜度有所降低,且當(dāng)k取值為? 8 左右時(shí),改進(jìn)算法的性能最佳。算法思想如下:

    [cpp] view plaincopyprint?
  • void?print(int?a[],?int?n){??
  • ????for(int?j=?0;?j<n;?j++){??
  • ????????cout<<a[j]?<<"??";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • ??
  • void?swap(int?*a,?int?*b)??
  • {??
  • ????int?tmp?=?*a;??
  • ????*a?=?*b;??
  • ????*b?=?tmp;??
  • }??
  • ??
  • int?partition(int?a[],?int?low,?int?high)??
  • {??
  • ????int?privotKey?=?a[low];?????????????????//基準(zhǔn)元素??
  • ????while(low?<?high){???????????????????//從表的兩端交替地向中間掃描??
  • ????????while(low?<?high??&&?a[high]?>=?privotKey)?--high;?//從high?所指位置向前搜索,至多到low+1?位置。將比基準(zhǔn)元素小的交換到低端??
  • ????????swap(&a[low],?&a[high]);??
  • ????????while(low?<?high??&&?a[low]?<=?privotKey?)?++low;??
  • ????????swap(&a[low],?&a[high]);??
  • ????}??
  • ????print(a,10);??
  • ????return?low;??
  • }??
  • ??
  • ??
  • void?qsort_improve(int?r[?],int?low,int?high,?int?k){??
  • ????if(?high?-low?>?k?)?{?//長度大于k時(shí)遞歸,?k為指定的數(shù)??
  • ????????int?pivot?=?partition(r,?low,?high);?//?調(diào)用的Partition算法保持不變??
  • ????????qsort_improve(r,?low,?pivot?-?1,k);??
  • ????????qsort_improve(r,?pivot?+?1,?high,k);??
  • ????}???
  • }???
  • void?quickSort(int?r[],?int?n,?int?k){??
  • ????qsort_improve(r,0,n,k);//先調(diào)用改進(jìn)算法Qsort使之基本有序??
  • ??
  • ????//再用插入排序?qū)居行蛐蛄信判??
  • ????for(int?i=1;?i<=n;i?++){??
  • ????????int?tmp?=?r[i];???
  • ????????int?j=i-1;??
  • ????????while(tmp?<?r[j]){??
  • ????????????r[j+1]=r[j];?j=j-1;???
  • ????????}??
  • ????????r[j+1]?=?tmp;??
  • ????}???
  • ??
  • }???
  • ??
  • ??
  • ??
  • int?main(){??
  • ????int?a[10]?=?{3,1,5,7,2,4,9,6,10,8};??
  • ????cout<<"初始值:";??
  • ????print(a,10);??
  • ????quickSort(a,9,4);??
  • ????cout<<"結(jié)果:";??
  • ????print(a,10);??
  • ??
  • }??
  • void print(int a[], int n){for(int j= 0; j<n; j++){cout<<a[j] <<" ";}cout<<endl; }void swap(int *a, int *b) {int tmp = *a;*a = *b;*b = tmp; }int partition(int a[], int low, int high) {int privotKey = a[low]; //基準(zhǔn)元素while(low < high){ //從表的兩端交替地向中間掃描while(low < high && a[high] >= privotKey) --high; //從high 所指位置向前搜索,至多到low+1 位置。將比基準(zhǔn)元素小的交換到低端swap(&a[low], &a[high]);while(low < high && a[low] <= privotKey ) ++low;swap(&a[low], &a[high]);}print(a,10);return low; }void qsort_improve(int r[ ],int low,int high, int k){if( high -low > k ) { //長度大于k時(shí)遞歸, k為指定的數(shù)int pivot = partition(r, low, high); // 調(diào)用的Partition算法保持不變qsort_improve(r, low, pivot - 1,k);qsort_improve(r, pivot + 1, high,k);} } void quickSort(int r[], int n, int k){qsort_improve(r,0,n,k);//先調(diào)用改進(jìn)算法Qsort使之基本有序//再用插入排序?qū)居行蛐蛄信判騠or(int i=1; i<=n;i ++){int tmp = r[i]; int j=i-1;while(tmp < r[j]){r[j+1]=r[j]; j=j-1; }r[j+1] = tmp;} } int main(){int a[10] = {3,1,5,7,2,4,9,6,10,8};cout<<"初始值:";print(a,10);quickSort(a,9,4);cout<<"結(jié)果:";print(a,10);}

    ?

    7. 歸并排序(Merge Sort)

    ?

    基本思想:

    歸并(Merge)排序法是將兩個(gè)(或兩個(gè)以上)有序表合并成一個(gè)新的有序表,即把待排序序列分為若干個(gè)子序列,每個(gè)子序列是有序的。然后再把有序子序列合并為整體有序序列。

    歸并排序示例:

    ?

    ?

    合并方法:

    設(shè)r[i…n]由兩個(gè)有序子表r[i…m]和r[m+1…n]組成,兩個(gè)子表長度分別為n-i +1、n-m。

  • j=m+1;k=i;i=i; //置兩個(gè)子表的起始下標(biāo)及輔助數(shù)組的起始下標(biāo)
  • 若i>m 或j>n,轉(zhuǎn)⑷ //其中一個(gè)子表已合并完,比較選取結(jié)束
  • //選取r[i]和r[j]較小的存入輔助數(shù)組rf 如果r[i]<r[j],rf[k]=r[i]; i++; k++; 轉(zhuǎn)⑵ 否則,rf[k]=r[j]; j++; k++; 轉(zhuǎn)⑵
  • //將尚未處理完的子表中元素存入rf 如果i<=m,將r[i…m]存入rf[k…n] //前一子表非空 如果j<=n , ?將r[j…n] 存入rf[k…n] //后一子表非空
  • 合并結(jié)束。
  • [cpp] view plaincopyprint?
  • //將r[i…m]和r[m?+1?…n]歸并到輔助數(shù)組rf[i…n]??
  • void?Merge(ElemType?*r,ElemType?*rf,?int?i,?int?m,?int?n)??
  • {??
  • ????int?j,k;??
  • ????for(j=m+1,k=i;?i<=m?&&?j?<=n?;?++k){??
  • ????????if(r[j]?<?r[i])?rf[k]?=?r[j++];??
  • ????????else?rf[k]?=?r[i++];??
  • ????}??
  • ????while(i?<=?m)??rf[k++]?=?r[i++];??
  • ????while(j?<=?n)??rf[k++]?=?r[j++];??
  • }??
  • //將r[i…m]和r[m +1 …n]歸并到輔助數(shù)組rf[i…n] void Merge(ElemType *r,ElemType *rf, int i, int m, int n) {int j,k;for(j=m+1,k=i; i<=m && j <=n ; ++k){if(r[j] < r[i]) rf[k] = r[j++];else rf[k] = r[i++];}while(i <= m) rf[k++] = r[i++];while(j <= n) rf[k++] = r[j++]; }

    歸并的迭代算法

    ?

    1 個(gè)元素的表總是有序的。所以對n 個(gè)元素的待排序列,每個(gè)元素可看成1 個(gè)有序子表。對子表兩兩合并生成n/2個(gè)子表,所得子表除最后一個(gè)子表長度可能為1 外,其余子表長度均為2。再進(jìn)行兩兩合并,直到生成n 個(gè)元素按關(guān)鍵碼有序的表。

    [cpp] view plaincopyprint?
  • void?print(int?a[],?int?n){??
  • ????for(int?j=?0;?j<n;?j++){??
  • ????????cout<<a[j]?<<"??";??
  • ????}??
  • ????cout<<endl;??
  • }??
  • ??
  • //將r[i…m]和r[m?+1?…n]歸并到輔助數(shù)組rf[i…n]??
  • void?Merge(ElemType?*r,ElemType?*rf,?int?i,?int?m,?int?n)??
  • {??
  • ????int?j,k;??
  • ????for(j=m+1,k=i;?i<=m?&&?j?<=n?;?++k){??
  • ????????if(r[j]?<?r[i])?rf[k]?=?r[j++];??
  • ????????else?rf[k]?=?r[i++];??
  • ????}??
  • ????while(i?<=?m)??rf[k++]?=?r[i++];??
  • ????while(j?<=?n)??rf[k++]?=?r[j++];??
  • ????print(rf,n+1);??
  • }??
  • ??
  • void?MergeSort(ElemType?*r,?ElemType?*rf,?int?lenght)??
  • {???
  • ????int?len?=?1;??
  • ????ElemType?*q?=?r?;??
  • ????ElemType?*tmp?;??
  • ????while(len?<?lenght)?{??
  • ????????int?s?=?len;??
  • ????????len?=?2?*?s?;??
  • ????????int?i?=?0;??
  • ????????while(i+?len?<lenght){??
  • ????????????Merge(q,?rf,??i,?i+?s-1,?i+?len-1?);?//對等長的兩個(gè)子表合并??
  • ????????????i?=?i+?len;??
  • ????????}??
  • ????????if(i?+?s?<?lenght){??
  • ????????????Merge(q,?rf,??i,?i+?s?-1,?lenght?-1);?//對不等長的兩個(gè)子表合并??
  • ????????}??
  • ????????tmp?=?q;?q?=?rf;?rf?=?tmp;?//交換q,rf,以保證下一趟歸并時(shí),仍從q?歸并到rf??
  • ????}??
  • }??
  • ??
  • ??
  • int?main(){??
  • ????int?a[10]?=?{3,1,5,7,2,4,9,6,10,8};??
  • ????int?b[10];??
  • ????MergeSort(a,?b,?10);??
  • ????print(b,10);??
  • ????cout<<"結(jié)果:";??
  • ????print(a,10);??
  • ??
  • }??
  • void print(int a[], int n){for(int j= 0; j<n; j++){cout<<a[j] <<" ";}cout<<endl; }//將r[i…m]和r[m +1 …n]歸并到輔助數(shù)組rf[i…n] void Merge(ElemType *r,ElemType *rf, int i, int m, int n) {int j,k;for(j=m+1,k=i; i<=m && j <=n ; ++k){if(r[j] < r[i]) rf[k] = r[j++];else rf[k] = r[i++];}while(i <= m) rf[k++] = r[i++];while(j <= n) rf[k++] = r[j++];print(rf,n+1); }void MergeSort(ElemType *r, ElemType *rf, int lenght) { int len = 1;ElemType *q = r ;ElemType *tmp ;while(len < lenght) {int s = len;len = 2 * s ;int i = 0;while(i+ len <lenght){Merge(q, rf, i, i+ s-1, i+ len-1 ); //對等長的兩個(gè)子表合并i = i+ len;}if(i + s < lenght){Merge(q, rf, i, i+ s -1, lenght -1); //對不等長的兩個(gè)子表合并}tmp = q; q = rf; rf = tmp; //交換q,rf,以保證下一趟歸并時(shí),仍從q 歸并到rf} }int main(){int a[10] = {3,1,5,7,2,4,9,6,10,8};int b[10];MergeSort(a, b, 10);print(b,10);cout<<"結(jié)果:";print(a,10);}

    兩路歸并的遞歸算法

    [cpp] view plaincopyprint?
  • void?MSort(ElemType?*r,?ElemType?*rf,int?s,?int?t)??
  • {???
  • ????ElemType?*rf2;??
  • ????if(s==t)?r[s]?=?rf[s];??
  • ????else??
  • ????{???
  • ????????int?m=(s+t)/2;??????????/*平分*p?表*/??
  • ????????MSort(r,?rf2,?s,?m);????????/*遞歸地將p[s…m]歸并為有序的p2[s…m]*/??
  • ????????MSort(r,?rf2,?m+1,?t);??????/*遞歸地將p[m+1…t]歸并為有序的p2[m+1…t]*/??
  • ????????Merge(rf2,?rf,?s,?m+1,t);???/*將p2[s…m]和p2[m+1…t]歸并到p1[s…t]*/??
  • ????}??
  • }??
  • void?MergeSort_recursive(ElemType?*r,?ElemType?*rf,?int?n)??
  • {???/*對順序表*p?作歸并排序*/??
  • ????MSort(r,?rf,0,?n-1);??
  • }??
  • void MSort(ElemType *r, ElemType *rf,int s, int t) { ElemType *rf2;if(s==t) r[s] = rf[s];else{ int m=(s+t)/2; /*平分*p 表*/MSort(r, rf2, s, m); /*遞歸地將p[s…m]歸并為有序的p2[s…m]*/MSort(r, rf2, m+1, t); /*遞歸地將p[m+1…t]歸并為有序的p2[m+1…t]*/Merge(rf2, rf, s, m+1,t); /*將p2[s…m]和p2[m+1…t]歸并到p1[s…t]*/} } void MergeSort_recursive(ElemType *r, ElemType *rf, int n) { /*對順序表*p 作歸并排序*/MSort(r, rf,0, n-1); }

    8. 桶排序/基數(shù)排序(Radix Sort)

    說基數(shù)排序之前,我們先說桶排序:

    基本思想:是將陣列分到有限數(shù)量的桶子里。每個(gè)桶子再個(gè)別排序(有可能再使用別的排序算法或是以遞回方式繼續(xù)使用桶排序進(jìn)行排序)。桶排序是鴿巢排序的一種歸納結(jié)果。當(dāng)要被排序的陣列內(nèi)的數(shù)值是均勻分配的時(shí)候,桶排序使用線性時(shí)間(Θ(n))。但桶排序并不是 比較排序,他不受到 O(n log n) 下限的影響。 ???????? 簡單來說,就是把數(shù)據(jù)分組,放在一個(gè)個(gè)的桶中,然后對每個(gè)桶里面的在進(jìn)行排序。 ?

    ?

    ?例如要對大小為[1..1000]范圍內(nèi)的n個(gè)整數(shù)A[1..n]排序 ?

    ?首先,可以把桶設(shè)為大小為10的范圍,具體而言,設(shè)集合B[1]存儲(chǔ)[1..10]的整數(shù),集合B[2]存儲(chǔ) ? (10..20]的整數(shù),……集合B[i]存儲(chǔ)( ? (i-1)*10, ? i*10]的整數(shù),i ? = ? 1,2,..100。總共有? 100個(gè)桶。 ?

    ? 然后,對A[1..n]從頭到尾掃描一遍,把每個(gè)A[i]放入對應(yīng)的桶B[j]中。? 再對這100個(gè)桶中每個(gè)桶里的數(shù)字排序,這時(shí)可用冒泡,選擇,乃至快排,一般來說任? 何排序法都可以。

    ? 最后,依次輸出每個(gè)桶里面的數(shù)字,且每個(gè)桶中的數(shù)字從小到大輸出,這? 樣就得到所有數(shù)字排好序的一個(gè)序列了。 ?

    ? 假設(shè)有n個(gè)數(shù)字,有m個(gè)桶,如果數(shù)字是平均分布的,則每個(gè)桶里面平均有n/m個(gè)數(shù)字。如果 ?

    ? 對每個(gè)桶中的數(shù)字采用快速排序,那么整個(gè)算法的復(fù)雜度是 ?

    ? O(n?? + ? m ? * ? n/m*log(n/m)) ? = ? O(n?? + ? nlogn ? - ? nlogm) ?

    ? 從上式看出,當(dāng)m接近n的時(shí)候,桶排序復(fù)雜度接近O(n) ?

    ? 當(dāng)然,以上復(fù)雜度的計(jì)算是基于輸入的n個(gè)數(shù)字是平均分布這個(gè)假設(shè)的。這個(gè)假設(shè)是很強(qiáng)的? ,實(shí)際應(yīng)用中效果并沒有這么好。如果所有的數(shù)字都落在同一個(gè)桶中,那就退化成一般的排序了。??

    ??????? 前面說的幾大排序算法 ,大部分時(shí)間復(fù)雜度都是O(n2),也有部分排序算法時(shí)間復(fù)雜度是O(nlogn)。而桶式排序卻能實(shí)現(xiàn)O(n)的時(shí)間復(fù)雜度。但桶排序的缺點(diǎn)是:

    ??????? 1)首先是空間復(fù)雜度比較高,需要的額外開銷大。排序有兩個(gè)數(shù)組的空間開銷,一個(gè)存放待排序數(shù)組,一個(gè)就是所謂的桶,比如待排序值是從0到m-1,那就需要m個(gè)桶,這個(gè)桶數(shù)組就要至少m個(gè)空間。

    ??????? 2)其次待排序的元素都要在一定的范圍內(nèi)等等。

    ?????? 桶式排序是一種分配排序。分配排序的特定是不需要進(jìn)行關(guān)鍵碼的比較,但前提是要知道待排序列的一些具體情況。

    ?

    分配排序的基本思想:說白了就是進(jìn)行多次的桶式排序。

    基數(shù)排序過程無須比較關(guān)鍵字,而是通過“分配”和“收集”過程來實(shí)現(xiàn)排序。它們的時(shí)間復(fù)雜度可達(dá)到線性階:O(n)。

    實(shí)例:

    撲克牌中52 張牌,可按花色和面值分成兩個(gè)字段,其大小關(guān)系為: 花色: 梅花< 方塊< 紅心< 黑心 ? 面值: 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A

    若對撲克牌按花色、面值進(jìn)行升序排序,得到如下序列:

    即兩張牌,若花色不同,不論面值怎樣,花色低的那張牌小于花色高的,只有在同花色情況下,大小關(guān)系才由面值的大小確定。這就是多關(guān)鍵碼排序。

    為得到排序結(jié)果,我們討論兩種排序方法。 方法1:先對花色排序,將其分為4 個(gè)組,即梅花組、方塊組、紅心組、黑心組。再對每個(gè)組分別按面值進(jìn)行排序,最后,將4 個(gè)組連接起來即可。 方法2:先按13 個(gè)面值給出13 個(gè)編號組(2 號,3 號,...,A 號),將牌按面值依次放入對應(yīng)的編號組,分成13 堆。再按花色給出4 個(gè)編號組(梅花、方塊、紅心、黑心),將2號組中牌取出分別放入對應(yīng)花色組,再將3 號組中牌取出分別放入對應(yīng)花色組,……,這樣,4 個(gè)花色組中均按面值有序,然后,將4 個(gè)花色組依次連接起來即可。

    設(shè)n 個(gè)元素的待排序列包含d 個(gè)關(guān)鍵碼{k1,k2,…,kd},則稱序列對關(guān)鍵碼{k1,k2,…,kd}有序是指:對于序列中任兩個(gè)記錄r[i]和r[j](1≤i≤j≤n)都滿足下列有序關(guān)系:

    ?????????????????????????????????????????????????? ???????????

    其中k1 稱為最主位關(guān)鍵碼,kd 稱為最次位關(guān)鍵碼?????。

    ?

    兩種多關(guān)鍵碼排序方法:

    多關(guān)鍵碼排序按照從最主位關(guān)鍵碼到最次位關(guān)鍵碼或從最次位到最主位關(guān)鍵碼的順序逐次排序,分兩種方法:

    最高位優(yōu)先(Most Significant Digit first)法,簡稱MSD 法:

    1)先按k1 排序分組,將序列分成若干子序列,同一組序列的記錄中,關(guān)鍵碼k1 相等。

    2)再對各組按k2 排序分成子組,之后,對后面的關(guān)鍵碼繼續(xù)這樣的排序分組,直到按最次位關(guān)鍵碼kd 對各子組排序后。

    3)再將各組連接起來,便得到一個(gè)有序序列。撲克牌按花色、面值排序中介紹的方法一即是MSD 法。

    最低位優(yōu)先(Least Significant Digit first)法,簡稱LSD 法:

    1) 先從kd 開始排序,再對kd-1進(jìn)行排序,依次重復(fù),直到按k1排序分組分成最小的子序列后。

    2) 最后將各個(gè)子序列連接起來,便可得到一個(gè)有序的序列, 撲克牌按花色、面值排序中介紹的方法二即是LSD 法。

    ?

    基于LSD方法的鏈?zhǔn)交鶖?shù)排序的基本思想

      “多關(guān)鍵字排序”的思想實(shí)現(xiàn)“單關(guān)鍵字排序”。對數(shù)字型或字符型的單關(guān)鍵字,可以看作由多個(gè)數(shù)位或多個(gè)字符構(gòu)成的多關(guān)鍵字,此時(shí)可以采用“分配-收集”的方法進(jìn)行排序,這一過程稱作基數(shù)排序法,其中每個(gè)數(shù)字或字符可能的取值個(gè)數(shù)稱為基數(shù)。比如,撲克牌的花色基數(shù)為4,面值基數(shù)為13。在整理撲克牌時(shí),既可以先按花色整理,也可以先按面值整理。按花色整理時(shí),先按紅、黑、方、花的順序分成4摞(分配),再按此順序再疊放在一起(收集),然后按面值的順序分成13摞(分配),再按此順序疊放在一起(收集),如此進(jìn)行二次分配和收集即可將撲克牌排列有序。? ?

    基數(shù)排序:

    是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時(shí)候有些屬性是有優(yōu)先級順序的,先按低優(yōu)先級排序,再按高優(yōu)先級排序。最后的次序就是高優(yōu)先級高的在前,高優(yōu)先級相同的低優(yōu)先級高的在前。基數(shù)排序基于分別排序,分別收集,所以是穩(wěn)定的。

    算法實(shí)現(xiàn):

    [cpp] view plaincopyprint?
  • Void?RadixSort(Node?L[],length,maxradix)??
  • {??
  • ???int?m,n,k,lsp;??
  • ???k=1;m=1;??
  • ???int?temp[10][length-1];??
  • ???Empty(temp);?//清空臨時(shí)空間??
  • ???while(k<maxradix)?//遍歷所有關(guān)鍵字??
  • ???{??
  • ?????for(int?i=0;i<length;i++)?//分配過程??
  • ????{??
  • ???????if(L[i]<m)??
  • ??????????Temp[0][n]=L[i];??
  • ???????else??
  • ??????????Lsp=(L[i]/m)%10;?//確定關(guān)鍵字??
  • ???????Temp[lsp][n]=L[i];??
  • ???????n++;??
  • ???}??
  • ???CollectElement(L,Temp);?//收集??
  • ???n=0;??
  • ???m=m*10;??
  • ??k++;??
  • ?}??
  • }??
  • Void RadixSort(Node L[],length,maxradix) {int m,n,k,lsp;k=1;m=1;int temp[10][length-1];Empty(temp); //清空臨時(shí)空間while(k<maxradix) //遍歷所有關(guān)鍵字{for(int i=0;i<length;i++) //分配過程{if(L[i]<m)Temp[0][n]=L[i];elseLsp=(L[i]/m)%10; //確定關(guān)鍵字Temp[lsp][n]=L[i];n++;}CollectElement(L,Temp); //收集n=0;m=m*10;k++;} }

    ?

    ?

    ?

    ?

    總結(jié)

    各種排序的穩(wěn)定性,時(shí)間復(fù)雜度和空間復(fù)雜度總結(jié):

    ?我們比較時(shí)間復(fù)雜度函數(shù)的情況:

    ?

    ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?時(shí)間復(fù)雜度函數(shù)O(n)的增長情況

    所以對n較大的排序記錄。一般的選擇都是時(shí)間復(fù)雜度為O(nlog2n)的排序方法。

    ?

    時(shí)間復(fù)雜度來說:

    (1)平方階(O(n2))排序   各類簡單排序:直接插入、直接選擇和冒泡排序; ?(2)線性對數(shù)階(O(nlog2n))排序   快速排序堆排序歸并排序 ?(3)O(n1+§))排序,§是介于0和1之間的常數(shù)。

    ?????? 希爾排序 (4)線性階(O(n))排序   基數(shù)排序,此外還有桶、箱排序。

    說明:

    當(dāng)原表有序或基本有序時(shí),直接插入排序和冒泡排序?qū)⒋蟠鬁p少比較次數(shù)和移動(dòng)記錄的次數(shù),時(shí)間復(fù)雜度可降至O(n);

    而快速排序則相反,當(dāng)原表基本有序時(shí),將蛻化為冒泡排序,時(shí)間復(fù)雜度提高為O(n2);

    原表是否有序,對簡單選擇排序、堆排序、歸并排序和基數(shù)排序的時(shí)間復(fù)雜度影響不大。

    ?

    穩(wěn)定性:

    排序算法的穩(wěn)定性:若待排序的序列中,存在多個(gè)具有相同關(guān)鍵字的記錄,經(jīng)過排序, 這些記錄的相對次序保持不變,則稱該算法是穩(wěn)定的;若經(jīng)排序后,記錄的相對 次序發(fā)生了改變,則稱該算法是不穩(wěn)定的。? ???? 穩(wěn)定性的好處:排序算法如果是穩(wěn)定的,那么從一個(gè)鍵上排序,然后再從另一個(gè)鍵上排序,第一個(gè)鍵排序的結(jié)果可以為第二個(gè)鍵排序所用。基數(shù)排序就是這樣,先按低位排序,逐次按高位排序,低位相同的元素其順序再高位也相同時(shí)是不會(huì)改變的。另外,如果排序算法穩(wěn)定,可以避免多余的比較;

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序

    ?

    選擇排序算法準(zhǔn)則:

    每種排序算法都各有優(yōu)缺點(diǎn)。因此,在實(shí)用時(shí)需根據(jù)不同情況適當(dāng)選用,甚至可以將多種方法結(jié)合起來使用。

    選擇排序算法的依據(jù)

    影響排序的因素有很多,平均時(shí)間復(fù)雜度低的算法并不一定就是最優(yōu)的。相反,有時(shí)平均時(shí)間復(fù)雜度高的算法可能更適合某些特殊情況。同時(shí),選擇算法時(shí)還得考慮它的可讀性,以利于軟件的維護(hù)。一般而言,需要考慮的因素有以下四點(diǎn):

    1.待排序的記錄數(shù)目n的大小;

    2.記錄本身數(shù)據(jù)量的大小,也就是記錄中除關(guān)鍵字外的其他信息量的大小;

    3.關(guān)鍵字的結(jié)構(gòu)及其分布情況;

    4.對排序穩(wěn)定性的要求。

    設(shè)待排序元素的個(gè)數(shù)為n.

    1)當(dāng)n較大,則應(yīng)采用時(shí)間復(fù)雜度為O(nlog2n)的排序方法:快速排序、堆排序或歸并排序序。

    ?? 快速排序:是目前基于比較的內(nèi)部排序中被認(rèn)為是最好的方法,當(dāng)待排序的關(guān)鍵字是隨機(jī)分布時(shí),快速排序的平均時(shí)間最短; ?????? 堆排序 :? 如果內(nèi)存空間允許且要求穩(wěn)定性的,

    ?????? 歸并排序:它有一定數(shù)量的數(shù)據(jù)移動(dòng),所以我們可能過與插入排序組合,先獲得一定長度的序列,然后再合并,在效率上將有所提高。

    2)? 當(dāng)n較大,內(nèi)存空間允許,且要求穩(wěn)定性 =》歸并排序

    3)當(dāng)n較小,可采用直接插入或直接選擇排序。

    ??? 直接插入排序:當(dāng)元素分布有序,直接插入排序?qū)⒋蟠鬁p少比較次數(shù)和移動(dòng)記錄的次數(shù)。

    ??? 直接選擇排序 :元素分布有序,如果不要求穩(wěn)定性,選擇直接選擇排序

    5)一般不使用或不直接使用傳統(tǒng)的冒泡排序。

    6)基數(shù)排序 它是一種穩(wěn)定的排序算法,但有一定的局限性:   1、關(guān)鍵字可分解。   2、記錄的關(guān)鍵字位數(shù)較少,如果密集更好   3、如果是數(shù)字時(shí),最好是無符號的,否則將增加相應(yīng)的映射復(fù)雜度,可先將其正負(fù)分開排序。

    轉(zhuǎn)載于:https://www.cnblogs.com/openeim/p/3921645.html

    總結(jié)

    以上是生活随笔為你收集整理的九大排序算法,你会几个?的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。