日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Tensorflow实战之下载MNIST数据,自动分成train, validation和test三个数据集

發布時間:2025/5/22 编程问答 24 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Tensorflow实战之下载MNIST数据,自动分成train, validation和test三个数据集 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

TensorFlow 實戰Google深度學習框架 第2版 ,鄭澤宇之P96。下載MNIST數據,自動分成train, validation和test三個數據集,源碼如下:

#!/usr/bin/env python import os from tensorflow.examples.tutorials.mnist import input_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'mnist = input_data.read_data_sets("MNIST_data", one_hot=True)print("Training data size:\t", mnist.train.num_examples) print("Validating data size:\t", mnist.validation.num_examples) print("Testing data size:\t", mnist.test.num_examples) print("Example training data:\t", mnist.train.images[0]) print("Example training data label:\t", mnist.train.labels[0])

運行結果如下:

"C:\Program Files\Python\Python37\python.exe" "D:/Pycharm Projects/MLDemo/MLDemo.py" Extracting MNIST_data\train-labels-idx1-ubyte.gz Extracting MNIST_data\t10k-images-idx3-ubyte.gz Extracting MNIST_data\t10k-labels-idx1-ubyte.gz Training data size: 55000 Validating data size: 5000 Testing data size: 10000 Example training data: [0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0.3803922 0.37647063 0.30196080.46274513 0.2392157 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.35294120.5411765 0.9215687 0.9215687 0.9215687 0.9215687 0.92156870.9215687 0.9843138 0.9843138 0.9725491 0.9960785 0.96078440.9215687 0.74509805 0.08235294 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0.54901963 0.9843138 0.9960785 0.99607850.9960785 0.9960785 0.9960785 0.9960785 0.9960785 0.99607850.9960785 0.9960785 0.9960785 0.9960785 0.9960785 0.99607850.7411765 0.09019608 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0.8862746 0.9960785 0.81568635 0.7803922 0.7803922 0.78039220.7803922 0.54509807 0.2392157 0.2392157 0.2392157 0.23921570.2392157 0.5019608 0.8705883 0.9960785 0.9960785 0.74117650.08235294 0. 0. 0. 0. 0.0. 0. 0. 0. 0.14901961 0.321568640.0509804 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0.13333334 0.8352942 0.9960785 0.9960785 0.45098042 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.329411770.9960785 0.9960785 0.9176471 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0.32941177 0.9960785 0.99607850.9176471 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0.4156863 0.6156863 0.9960785 0.9960785 0.95294124 0.200000020. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.098039220.45882356 0.8941177 0.8941177 0.8941177 0.9921569 0.99607850.9960785 0.9960785 0.9960785 0.94117653 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0.26666668 0.4666667 0.86274517 0.9960785 0.99607850.9960785 0.9960785 0.9960785 0.9960785 0.9960785 0.99607850.9960785 0.5568628 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0.14509805 0.73333335 0.99215690.9960785 0.9960785 0.9960785 0.8745099 0.8078432 0.80784320.29411766 0.26666668 0.8431373 0.9960785 0.9960785 0.458823560. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0.4431373 0.8588236 0.9960785 0.9490197 0.89019614 0.450980420.34901962 0.12156864 0. 0. 0. 0.0.7843138 0.9960785 0.9450981 0.16078432 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0.6627451 0.99607850.6901961 0.24313727 0. 0. 0. 0.0. 0. 0. 0.18823531 0.9058824 0.99607850.9176471 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0.07058824 0.48627454 0. 0.0. 0. 0. 0. 0. 0.0. 0.32941177 0.9960785 0.9960785 0.6509804 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.545098070.9960785 0.9333334 0.22352943 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0.8235295 0.9803922 0.9960785 0.658823550. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0.9490197 0.9960785 0.93725497 0.22352943 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0.34901962 0.9843138 0.94509810.3372549 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0.01960784 0.8078432 0.96470594 0.6156863 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0.01568628 0.458823560.27058825 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. 0. 0.0. 0. 0. 0. ] Example training data label: [0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]Process finished with exit code 0

?

總結

以上是生活随笔為你收集整理的Tensorflow实战之下载MNIST数据,自动分成train, validation和test三个数据集的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。