日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Keras入门(一)

發布時間:2025/4/16 编程问答 20 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Keras入门(一) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

內容引自Keras中文文檔

類似 VGG 的卷積神經網絡:

import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD# 生成虛擬數據 x_train = np.random.random((100, 100, 100, 3)) y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) x_test = np.random.random((20, 100, 100, 3)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)model = Sequential() # 輸入: 3 通道 100x100 像素圖像 -> (100, 100, 3) 張量。 # 使用 32 個大小為 3x3 的卷積濾波器。 model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3))) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25))model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25))model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd)model.fit(x_train, y_train, batch_size=32, epochs=10) score = model.evaluate(x_test, y_test, batch_size=32)

?

總結

以上是生活随笔為你收集整理的Keras入门(一)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。