日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

【Paper】2021_Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc

發布時間:2025/4/5 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【Paper】2021_Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

X. Xu, B. A??kme?e and M. J. Corless, “Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbances,” in IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1129-1143, March 2021, doi: 10.1109/TAC.2020.2996985.

文章目錄

  • 1 Introduction
  • 2 Preliminaries
  • 3 LMI-Based Conditions for robust global stablization of incrementally quadratic nonlinear systems
    • A. Block diagonal parameterization
  • 4 ETC design
    • A. Configuration I: the controller channel is implemented by ETM
    • B. Configuration II: the controller and observer channels are both implemented by ETMs
  • 5 Simulation example

1 Introduction

2 Preliminaries

非線形系統描述為:

{x˙=Ax+Bu+Ep(q)+Ewwy=Cx+Du+Fwwq=Cqx(1)\left\{\begin{aligned} \dot{{x}} =& A {x} + B u + E p({q}) + E_w w \\ {y} =& C {x} + D u + F_w w \\ {q} =& C_q {x} \end{aligned}\right. \tag{1}??????x˙=y=q=?Ax+Bu+Ep(q)+Ew?wCx+Du+Fw?wCq?x?(1)

3 LMI-Based Conditions for robust global stablization of incrementally quadratic nonlinear systems

觀測器設計為:
{x^˙=Ax^+Bu+Ep(q^+L1(y^?y))+L2(y^?y)y^=Cx^+Duq^=Cqx^(11)\left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - y)~) + L_2(\hat{y} - y) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{11}??????x^˙=y^?=q^?=?Ax^+Bu+Ep(?q^?+L1?(y^??y)?)+L2?(y^??y)Cx^+DuCq?x^?(11)

反饋控制輸入為
u(t)=k(x^)(12)u(t) = k(\hat{x}) \tag{12}u(t)=k(x^)(12)

基于觀測器控制器(12)的閉環系統可以表示為
{x˙=(A+BK1)x+(E+BK2)p+BΔk+Ewwe˙=(A+L2C)e?Eδp+(Ew+L2Fw)w(15)\left\{\begin{aligned} \dot{{x}} =& (A+BK_1) {x} + (E + BK_2) p + B \Delta k + E_w w \\ \dot{e} =& (A+L_2 C) e - E \delta p + (E_w + L_2 F_w) w \\ \end{aligned}\right. \tag{15}{x˙=e˙=?(A+BK1?)x+(E+BK2?)p+BΔk+Ew?w(A+L2?C)e?Eδp+(Ew?+L2?Fw?)w?(15)

定義 z=(xe)z = (\begin{matrix}x \\ e \\ \end{matrix})z=(xe?),動力學(15)可以表示為
z˙=Acz+H1p+H2δp+H3Δp+H4w(17)\dot{z} = A_c z + H_1 p + H_2 \delta p + H_3 \Delta p + H_4 w \tag{17}z˙=Ac?z+H1?p+H2?δp+H3?Δp+H4?w(17)

A. Block diagonal parameterization


4 ETC design

A. Configuration I: the controller channel is implemented by ETM

控制輸入為:

u(t)=K1x^s(t)+K2p(Cqx^s(t))(71)u(t) = K_1 \hat{x}_s(t) + K_2 p(C_q \hat{x}_s(t)) \tag{71}u(t)=K1?x^s?(t)+K2?p(Cq?x^s?(t))(71)


B. Configuration II: the controller and observer channels are both implemented by ETMs

ys(t)=y(tky)?t∈[tky,tk+1y)y_s(t) = y(t_k^y) ~~~~ \forall t \in [t_k^y, t_{k+1}^y)ys?(t)=y(tky?)?????t[tky?,tk+1y?)

這里,t0y=0t_0^y = 0t0y?=0 并且觸發時刻 t1y,t2y,?t_1^y, t_2^y, \cdotst1y?,t2y?,? 由以下觸發規則決定:
tk+1y=inf?{t∣t≥tky+τy,∥ye(t)∥>σy∥y(t)∥+?y}(83)t_{k+1}^y = \inf \{ t | ~~~t \ge t_k^y + \tau_y, ~~~\|y_e(t)\| > \sigma_y \| y(t) \| + \epsilon_y \} \tag{83}tk+1y?=inf{t???ttky?+τy?,???ye?(t)>σy?y(t)+?y?}(83)

其中 ye(t)=ys(t)?y(t)y_e(t) = y_s(t) - y(t)ye?(t)=ys?(t)?y(t) 并且 τy,σy,?y\tau_y, \sigma_y, \epsilon_yτy?,σy?,?y? 都是設定好的正數。


結合采樣信息 ys(t)y_s(t)ys?(t),觀測器變為
{x^˙=Ax^+Bu+Ep(q^+L1(y^?ys))+L2(y^?ys)y^=Cx^+Duq^=Cqx^(84)\left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - \red{y_s})~) + L_2(\hat{y} - \red{y_s}) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{84}??????x^˙=y^?=q^?=?Ax^+Bu+Ep(?q^?+L1?(y^??ys?)?)+L2?(y^??ys?)Cx^+DuCq?x^?(84)

其中 L1,L2L_1, L_2L1?,L2? 是設計矩陣。


基于觀測器控制輸入 u(t)u(t)u(t) 如(71)所示,其中 x^s(t)\hat{x}_s(t)x^s?(t) 更新在時刻 t1u,t2u,?t_1^u, t_2^u, \cdotst1u?,t2u?,?
x^s(t)=x^(tku)?t∈[tku,tk+1u)\hat{x}_s(t) = \hat{x} (t_k^u) ~~~~ \forall t \in [t_k^u, t_{k+1}^u)x^s?(t)=x^(tku?)?????t[tku?,tk+1u?)

這里,t0u=0t_0^u = 0t0u?=0 并且觸發時刻 t1u,t2u,?t_1^u, t_2^u, \cdotst1u?,t2u?,? 由以下觸發規則決定:
tk+1u=inf?{t∣t≥tku+τu,∥x^e(t)∥>σu∥x^(t)∥+?u}(85)t_{k+1}^u = \inf \{ t | ~~~t \ge t_k^u + \tau_u, ~~~\|\hat{x}_e(t)\| > \sigma_u \| \hat{x}(t) \| + \epsilon_u \} \tag{85}tk+1u?=inf{t???ttku?+τu?,???x^e?(t)>σu?x^(t)+?u?}(85)

其中 x^e(t)=x^(tk)?x^(t)\hat{x}_e(t) = \hat{x}(t_k) - \hat{x}(t)x^e?(t)=x^(tk?)?x^(t) 并且 τu,σu,?u\tau_u, \sigma_u, \epsilon_uτu?,σu?,?u? 都是設定好的正數。注意 x^\hat{x}x^x^e\hat{x}_ex^e? 的信息可以從設計的觀測器中獲得。


5 Simulation example

x˙1=x2x˙2=?sin?(x1)+u+wy=x1\begin{aligned} \dot{x}_1 =& x_2 \\ \dot{x}_2 =& -\sin(x_1) + u + w \\ y =& x_1 \\ \end{aligned}x˙1?=x˙2?=y=?x2??sin(x1?)+u+wx1??

觀測器設計為
{x^˙=Ax^+Bu+Ep(q^+L1(y^?y))+L2(y^?y)y^=Cx^+Duq^=Cqx^(11)\left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q} + L_1(\hat{y} - y)~) + L_2(\hat{y} - y) \\ \hat{y} =& C \hat{x} + D u \\ \hat{q} =& C_q \hat{x} \end{aligned}\right. \tag{11}??????x^˙=y^?=q^?=?Ax^+Bu+Ep(?q^?+L1?(y^??y)?)+L2?(y^??y)Cx^+DuCq?x^?(11)

仿真時參數假設為 L1=?1,L2=[?5.1294,?18.0352]T,p(q^)=sin?(q^),Cq=(1,0)L_1 = -1, L_2 = [-5.1294, -18.0352]^\text{T}, p(\hat{q}) = \sin(\hat{q}), C_q = (1, 0)L1?=?1,L2?=[?5.1294,?18.0352]T,p(q^?)=sin(q^?),Cq?=(1,0).


因為觀測值 y^\hat{y}y^? 常由傳感器獲得,因此這里假設 y^=y\hat{y} = yy^?=y,于是有
{x^˙=Ax^+Bu+Ep(q^)q^=Cqx^\left\{\begin{aligned} \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q}~) \\ \hat{q} =& C_q \hat{x} \\ \end{aligned}\right.{x^˙=q^?=?Ax^+Bu+Ep(?q^??)Cq?x^?


反饋控制輸入為
u(t)=k(x^)(12)u(t) = k(\hat{x}) \tag{12}u(t)=k(x^)(12)

u(t)=K1x^s(t)+K2p(Cqx^s(t))(71)u(t) = K_1 \hat{x}_s(t) + K_2 p(C_q \hat{x}_s(t)) \tag{71}u(t)=K1?x^s?(t)+K2?p(Cq?x^s?(t))(71)
其中參數假設為 K1=(?7.3936,?3.9937),K2=1K_1 = (-7.3936, -3.9937), K_2 = 1K1?=(?7.3936,?3.9937),K2?=1.
www is uniformly generated from [?w0,w0][-w_0, w_0][?w0?,w0?].


結合上述分析過程,可以通過以下方式求解觀測值 x^\hat{x}x^
{q^=Cqx^u=K1x^(t)+K2p(q^)x^˙=Ax^+Bu+Ep(q^)\left\{\begin{aligned} \hat{q} =& C_q \hat{x} \\ u =& K_1 \hat{x}(t) + K_2 p(~\hat{q}~) \\ \dot{\hat{x}} =& A \hat{x} + B u + E p(~\hat{q}~) \\ \end{aligned}\right.??????q^?=u=x^˙=?Cq?x^K1?x^(t)+K2?p(?q^??)Ax^+Bu+Ep(?q^??)?


之后,也可以通過同樣方式,結合公式(1)求出系統狀態。

誤差圖如下,用來對比原文中的 Fig.4.


接下來分析 ETC

ys(t)=y(tky)?t∈[tky,tk+1y)y_s(t) = y(t_k^y) ~~~~ \forall t \in [t_k^y, t_{k+1}^y)ys?(t)=y(tky?)?????t[tky?,tk+1y?)

這里,t0y=0t_0^y = 0t0y?=0 并且觸發時刻 t1y,t2y,?t_1^y, t_2^y, \cdotst1y?,t2y?,? 由以下觸發規則決定:
tk+1y=inf?{t∣t≥tky+τy,∥ye(t)∥>σy∥y(t)∥+?y}(83)t_{k+1}^y = \inf \{ t | ~~~t \ge t_k^y + \tau_y, ~~~\|y_e(t)\| > \sigma_y \| y(t) \| + \epsilon_y \} \tag{83}tk+1y?=inf{t???ttky?+τy?,???ye?(t)>σy?y(t)+?y?}(83)

其中 ye(t)=ys(t)?y(t)y_e(t) = y_s(t) - y(t)ye?(t)=ys?(t)?y(t) 并且 τy,σy,?y\tau_y, \sigma_y, \epsilon_yτy?,σy?,?y? 都是設定好的正數。

k=0,t1y=inf?{t∣t≥0+1.07?1e?4,∥ye(t)∥>0.0017∥y(t)∥+0.005}k=1,t2y=inf?{t∣t≥t1y+1.07?1e?4,∥ye(t)∥>0.0017∥y(t)∥+0.005}k=2,t3y=k=3,t4y=\begin{aligned} k = 0, t_1^y =& \inf \{ t | ~~~t \ge 0 + 1.07*1e-4, ~~~\|y_e(t)\| > 0.0017 \| y(t) \| + 0.005 \} \\ k = 1, t_2^y =& \inf \{ t | ~~~t \ge t_1^y + 1.07*1e-4, ~~~\|y_e(t)\| > 0.0017 \| y(t) \| + 0.005 \} \\ k = 2, t_3^y =& \\ k = 3, t_4^y =& \\ \end{aligned}k=0,t1y?=k=1,t2y?=k=2,t3y?=k=3,t4y?=?inf{t???t0+1.07?1e?4,???ye?(t)>0.0017y(t)+0.005}inf{t???tt1y?+1.07?1e?4,???ye?(t)>0.0017y(t)+0.005}?

總結

以上是生活随笔為你收集整理的【Paper】2021_Observer-Based Controllers for Incrementally Quadratic Nonlinear Systems With Disturbanc的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。