日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

tensorflow 进阶(二),BP神经网络

發布時間:2025/4/5 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 tensorflow 进阶(二),BP神经网络 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

這是一個三層的神經網絡,只含有一個隱藏層.正確率有98%

#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 22 22:15:25 2018@author: luogan """from tensorflow.examples.tutorials.mnist import input_datamnist=input_data.read_data_sets('MNIST_data/',one_hot=True)print(mnist.train.images.shape)print(mnist.train.labels.shape)print(mnist.test.images.shape)print(mnist.test.images.shape)a=mnist.train.images[8] #a.reshape(28,28) import pandas as pd #b=pd.DataFrame(a) #b b=pd.DataFrame(a.reshape(28,28)) #b #b=pd.DataFrame(a.reshape(28,28)) b.to_excel('c.xls') d=mnist.train.labels[8]print(mnist.validation.images.shape) print(mnist.validation.labels.shape)import tensorflow as tf sess=tf.InteractiveSession()in_units=784 h1_units=300w1=tf.Variable( tf.truncated_normal([in_units,h1_units],stddev=0.1 ) ) b1=tf.Variable(tf.zeros([h1_units]))w2=tf.Variable(tf.zeros([h1_units,10])) b2=tf.Variable(tf.zeros([10]))x=tf.placeholder(tf.float32,[None,in_units]) keep_prob=tf.placeholder(tf.float32)hidden1=tf.nn.relu(tf.matmul(x,w1)+b1) hidden1_drop=tf.nn.dropout(hidden1,keep_prob)y=tf.nn.softmax(tf.matmul(hidden1_drop,w2)+b2)y_=tf.placeholder(tf.float32,[None,10]) cross_entropy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))train_step=tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)tf.global_variables_initializer().run()for i in range(1000):batch_xs,batch_ys=mnist.train.next_batch(100)train_step.run({x:batch_xs,y_:batch_ys,keep_prob:0.75})correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels,keep_prob:1})) (55000, 784) (55000, 10) (10000, 784) (10000, 784) (5000, 784) (5000, 10) 0.9823

總結

以上是生活随笔為你收集整理的tensorflow 进阶(二),BP神经网络的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。