日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 人工智能 > pytorch >内容正文

pytorch

深度学习核心技术精讲100篇(五十八)- 如何量化医学图像分割中的置信度?

發(fā)布時(shí)間:2025/4/5 pytorch 48 豆豆
生活随笔 收集整理的這篇文章主要介紹了 深度学习核心技术精讲100篇(五十八)- 如何量化医学图像分割中的置信度? 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

前言

在過(guò)去的十年里,深度學(xué)習(xí)在一系列的應(yīng)用中取得了巨大的成功。然而,為了驗(yàn)證和可解釋性,我們不僅需要模型做出的預(yù)測(cè),還需要知道它在做出預(yù)測(cè)時(shí)的置信度。這對(duì)于讓醫(yī)學(xué)影像學(xué)的臨床醫(yī)生接受它是非常重要的。在本文中,我們展示了我們?cè)陧f洛爾理工學(xué)院進(jìn)行的研究。我們使用了一個(gè)基于變分推理技術(shù)的編碼解碼架構(gòu)來(lái)分割腦腫瘤圖像。我們比較了U-Net、V-Net和FCN等不同的主干架構(gòu)作為編碼器的條件分布采樣數(shù)據(jù)。我們使用Dice相似系數(shù)(DSC)和IOU作為評(píng)價(jià)指標(biāo)來(lái)評(píng)價(jià)我們?cè)诠_(kāi)數(shù)據(jù)集BRATS上的工作。

醫(yī)學(xué)圖像分割

在目前的文獻(xiàn)中主要利用兩種技術(shù)成功地解決了醫(yī)學(xué)圖像的分割問(wèn)題,一種是利用全卷積網(wǎng)絡(luò)(FCN),另一種是基于U-Net的技術(shù)。FCN體系結(jié)構(gòu)的主要特點(diǎn)是在最后沒(méi)有使用已成功用于圖像分類(lèi)問(wèn)題的全連接層。另一方面,U-Net使用一種編碼器-解碼器架構(gòu),在編碼器中有池化層,在解碼器中有上采樣層。

貝葉斯神經(jīng)網(wǎng)絡(luò)

這是一種可擴(kuò)展的避免神經(jīng)網(wǎng)絡(luò)過(guò)擬合的方法,同時(shí)也給了我們一個(gè)不確定性的度量。神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)給定的數(shù)據(jù)集的后驗(yàn)分布的權(quán)重,而不是基于點(diǎn)的估計(jì),如下面的公式所示。

預(yù)測(cè)分布可以通過(guò)逼近積分來(lái)計(jì)算,如下式所示。

變分推斷

變分推斷通過(guò)最大化證據(jù)下界來(lái)尋找分布的參數(shù)。ELBO由前后分布的Kullback-Leibler (KL)散度和負(fù)對(duì)數(shù)似然(NLL)兩項(xiàng)之和構(gòu)成。需要最小化的KL散度項(xiàng)如下式所示。

《新程序員》:云原生和全面數(shù)字化實(shí)踐50位技術(shù)專(zhuān)家共同創(chuàng)作,文字、視頻、音頻交互閱讀

總結(jié)

以上是生活随笔為你收集整理的深度学习核心技术精讲100篇(五十八)- 如何量化医学图像分割中的置信度?的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。