日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ML之Medicine:利用机器学习研发药物—《Machine Learning for Pharmaceutical Discovery and Synthesis Consortium》

發布時間:2025/3/21 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ML之Medicine:利用机器学习研发药物—《Machine Learning for Pharmaceutical Discovery and Synthesis Consortium》 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

ML之Medicine:利用機器學習研發藥物—《Machine Learning for Pharmaceutical Discovery and Synthesis Consortium》

?

?

目錄

Machine Learning in Computer-Aided Synthesis Planning

論文以及Demo


?

?

Machine Learning in Computer-Aided Synthesis Planning

Connor W. Coley?,?William H. Green*?, and?Klavs F. Jensen*?

Department of Chemical Engineering,?Massachusetts Institute of Technology,?77 Massachusetts Avenue,?Cambridge,?Massachusetts?02139,?United States

Acc. Chem. Res.,?2018,?51?(5), pp 1281–1289

DOI:?10.1021/acs.accounts.8b00087

Publication Date (Web): May 1, 2018

Copyright ? 2018 American Chemical Society

*E-mail:?whgreen@mit.edu., *E-mail:?kfjensen@mit.edu.

論文以及Demo

概要

? ? ? ? ?Computer-aided synthesis planning (CASP) is focused on the goal of accelerating the process by which chemists decide how to synthesize small molecule compounds. The ideal CASP program would take a molecular structure as input and output a sorted list of detailed reaction schemes that each connect that target to purchasable starting materials via a series of chemically feasible reaction steps. Early work in this field relied on expert-crafted reaction rules and heuristics to describe possible retrosynthetic disconnections and selectivity rules but suffered from incompleteness, infeasible suggestions, and human bias. With the relatively recent availability of large reaction corpora (such as the United States Patent and Trademark Office (USPTO), Reaxys, and SciFinder databases), consisting of millions of tabulated reaction examples, it is now possible to construct and validate purely data-driven approaches to synthesis planning. As a result, synthesis planning has been opened to machine learning techniques, and the field is advancing rapidly.

新藥研發的加速器:MIT研究人員開發機器學習方法,實現分子設計自動化

lab: http://mlpds.mit.edu/

ref: https://pubs.acs.org/doi/full/10.1021/acs.accounts.8b00087

paper: https://arxiv.org/pdf/1802.04364.pdf

datasets: http://zinc.docking.org/

Demo:http://askcos.mit.edu/

總結

以上是生活随笔為你收集整理的ML之Medicine:利用机器学习研发药物—《Machine Learning for Pharmaceutical Discovery and Synthesis Consortium》的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。