日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

DL之Encoder-Decoder:Encoder-Decoder结构的相关论文、设计思路、关键步骤等配图集合之详细攻略

發布時間:2025/3/21 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 DL之Encoder-Decoder:Encoder-Decoder结构的相关论文、设计思路、关键步骤等配图集合之详细攻略 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

DL之Encoder-Decoder:Encoder-Decoder模型的相關論文、設計思路、關鍵步驟等配圖集合之詳細攻略

?

?

目錄

Encoder-Decoder模型的相關論文

Encoder-Decoder模型的設計思路

Encoder-Decoder模型的關鍵步驟


?

?

Encoder-Decoder模型的相關論文

?

1、Encoder-Decoder 結構做機器翻譯任務的更多細節,可以參考 原始論文《Learning Phrase Representations using RNN Encoder– Decoder for Statistical Machine Translation》
論文地址:https://arxiv.org/pdf/1406.1078.pdf

?

?

Encoder-Decoder模型的設計思路

Abstract:In this paper, we propose a novel neural network model called RNN Encoder– Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixedlength vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder–Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.

1、An illustration of the proposed RNN Encoder–Decoder.

2、An illustration of the proposed hidden activation function. The update gate z selects whether the hidden state is to be updated with a new hidden state h?. The reset gate r decides whether the previous hidden state is ignored. See Eqs. (5)–(8) for the detailed equations of r, z, h and h?.

3、: BLEU scores computed on the development and test sets using different combinations of approaches. WP denotes a word penalty, where we penalizes the number of unknown words to neural networks.

4、2–D embedding of the learned word representation. The left one shows the full embedding space, while the right one shows a zoomed-in view of one region (color–coded). For more plots, see the supplementary material.

5、2–D embedding of the learned phrase representation. The top left one shows the full representation space (5000 randomly selected points), while the other three figures show the zoomed-in view of specific regions (color–coded).

?

Encoder-Decoder模型的關鍵步驟

1、E-D整體結構

2、E-D步驟解釋

?

?

?

?

總結

以上是生活随笔為你收集整理的DL之Encoder-Decoder:Encoder-Decoder结构的相关论文、设计思路、关键步骤等配图集合之详细攻略的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。