洛谷P4301 [CQOI2013]新Nim游戏
洛谷P4301 [CQOI2013]新Nim游戲
題目描述
傳統的Nim游戲是這樣的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴數量可以不同)。兩個游戲者輪流操作,每次可以選一個火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同時從超過一堆火柴中拿。拿走最后一根火柴的游戲者勝利。
本題的游戲稍微有些不同:在第一個回合中,第一個游戲者可以直接拿走若干個整堆的火柴??梢砸欢讯疾荒?#xff0c;但不可以全部拿走。第二回合也一樣,第二個游戲者也有這樣一次機會。從第三個回合(又輪到第一個游戲者)開始,規則和Nim游戲一樣。
如果你先拿,怎樣才能保證獲勝?如果可以獲勝的話,還要讓第一回合拿的火柴總數盡量小。
輸入輸出格式
輸入格式:
第一行為整數\(k\)。即火柴堆數。
第二行包含\(k\)個不超過10^9的正整數,即各堆的火柴個數。
輸出格式:
輸出第一回合拿的火柴數目的最小值。如果不能保證取勝,輸出-1。
思路:
線性基
對于nim游戲,有一個規律就是如果所有數異或和不為零,那么就是先手勝,否則先手敗。
可以這么理解這個規律,如果異或和不為零,那么說明此時棋盤上還有棋子,那么先手一定可以通過一次操作使得異或和變成零。
當異或和變成零之后,就會有兩種情況,一種是棋盤上還有棋子,一種是棋盤上沒有棋子。
對于第二種情況,已經獲得勝利了。
而對于第一種情況,后手的一次操作一定會讓異或和非零,那么就再次回到了一開始的情況,如此重復,先手一定會贏。
那么對于新nim游戲,留給先手的問題就變成了構造出一個和最大的數集,使這個數集中全部或部分的數以任意方式組合進行異或運算都無法使得異或和為零,即后手無法構造出異或和為零的狀態(他的必勝狀態)。
至此就符合了線性基性質。
CODE:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define MAXN 110 int nums[MAXN],li[MAXN]; int i,j,k,m,n; long long int ans; bool insert(int n){for(int i=62;i>=0;i--){if((n>>i)&1){if(!li[i]){li[i]=n;return true;}n^=li[i];}}return false; } int main(){scanf("%d",&n);for(i=1;i<=n;i++) scanf("%d",nums+i);sort(nums+1,nums+n+1);for(i=n;i>=1;i--){if(!insert(nums[i])) ans+=nums[i];}printf("%lld\n",ans);return 0; }轉載于:https://www.cnblogs.com/linxif2008/p/10198073.html
總結
以上是生活随笔為你收集整理的洛谷P4301 [CQOI2013]新Nim游戏的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: JuJu团队12月28号工作汇报
- 下一篇: 【USACO06DEC】—牛奶模式Mil