日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 >

【笔记】基于 Mask R-CNN 的玉米田间杂草检测方法

發布時間:2025/3/15 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 【笔记】基于 Mask R-CNN 的玉米田间杂草检测方法 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

《基于 Mask R-CNN 的玉米田間雜草檢測方法》

單位:山東農業大學信息科學與工程學院
作者:姜紅花

數據獲取

相機:Intel RealSense Depth CameraD435 型相機
拍照:距地面 1 m 處垂直拍攝
種類:刺兒草、莎草、灰菜、早熟禾和玉米幼苗圖像
數據量:1200×5
數據比例:訓練:測試 = 7:3
注:在不同的日照強度、土壤背景( 如濕度、麥稈殘茬) 條件下采集。

數據標注

LabelMe手工掩碼

模型構建

(1) 卷積神經網絡——提取特征
(2) 區域建議網絡——基于特征圖選出雜草的預選區域
(3) 區域特征聚集——得到固定尺寸的特征圖(池化)
(4) 輸出模塊——類別分類,目標框回歸,輪廓分割

參數設置

學習率:0.001
Batch size:32
迭代次數:20000

模型評價

使用均值平均精度(Mean average precision,mAP)作為雜草分割的評估指標, 每一個類別都可以根據召回率(Recall)和精確率( Precision) 繪制一條曲線, 平均精度(Average precision,AP) 是該曲線與坐標軸圍成的面積。mAP是由對全部類別的AP值求平均值得到



猜你喜歡:👇🏻
?【筆記】基于邊緣檢測和BP神經網絡的大豆雜草識別研究

總結

以上是生活随笔為你收集整理的【笔记】基于 Mask R-CNN 的玉米田间杂草检测方法的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。