日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

python雪花算法生成id_理解分布式id生成算法SnowFlake

發布時間:2025/3/12 python 39 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python雪花算法生成id_理解分布式id生成算法SnowFlake 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

分布式id生成算法的有很多種,Twitter的SnowFlake就是其中經典的一種。

概述

SnowFlake算法生成id的結果是一個64bit大小的整數,它的結構如下圖:

1位,不用。二進制中最高位為1的都是負數,但是我們生成的id一般都使用整數,所以這個最高位固定是0

41位,用來記錄時間戳(毫秒)。

41位可以表示$2^{41}-1$個數字,

如果只用來表示正整數(計算機中正數包含0),可以表示的數值范圍是:0 至 $2^{41}-1$,減1是因為可表示的數值范圍是從0開始算的,而不是1。

也就是說41位可以表示$2^{41}-1$個毫秒的值,轉化成單位年則是$(2^{41}-1) / (1000 * 60 * 60 * 24 * 365) = 69$年

10位,用來記錄工作機器id。

可以部署在$2^{10} = 1024$個節點,包括5位datacenterId和5位workerId

5位(bit)可以表示的最大正整數是$2^{5}-1 = 31$,即可以用0、1、2、3、....31這32個數字,來表示不同的datecenterId或workerId

12位,序列號,用來記錄同毫秒內產生的不同id。

12位(bit)可以表示的最大正整數是$2^{12}-1 = 4095$,即可以用0、1、2、3、....4094這4095個數字,來表示同一機器同一時間截(毫秒)內產生的4095個ID序號

由于在Java中64bit的整數是long類型,所以在Java中SnowFlake算法生成的id就是long來存儲的。

SnowFlake可以保證:

所有生成的id按時間趨勢遞增

整個分布式系統內不會產生重復id(因為有datacenterId和workerId來做區分)

Talk is cheap, show you the code

以下是Twitter官方原版的,用Scala寫的,(我也不懂Scala,當成Java看即可):

/** Copyright 2010-2012 Twitter, Inc.*/

package com.twitter.service.snowflake

import com.twitter.ostrich.stats.Stats

import com.twitter.service.snowflake.gen._

import java.util.Random

import com.twitter.logging.Logger

/**

* An object that generates IDs.

* This is broken into a separate class in case

* we ever want to support multiple worker threads

* per process

*/

class IdWorker(

val workerId: Long,

val datacenterId: Long,

private val reporter: Reporter,

var sequence: Long = 0L) extends Snowflake.Iface {

private[this] def genCounter(agent: String) = {

Stats.incr("ids_generated")

Stats.incr("ids_generated_%s".format(agent))

}

private[this] val exceptionCounter = Stats.getCounter("exceptions")

private[this] val log = Logger.get

private[this] val rand = new Random

val twepoch = 1288834974657L

private[this] val workerIdBits = 5L

private[this] val datacenterIdBits = 5L

private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)

private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)

private[this] val sequenceBits = 12L

private[this] val workerIdShift = sequenceBits

private[this] val datacenterIdShift = sequenceBits + workerIdBits

private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits

private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)

private[this] var lastTimestamp = -1L

// sanity check for workerId

if (workerId > maxWorkerId || workerId < 0) {

exceptionCounter.incr(1)

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

exceptionCounter.incr(1)

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))

}

log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId)

def get_id(useragent: String): Long = {

if (!validUseragent(useragent)) {

exceptionCounter.incr(1)

throw new InvalidUserAgentError

}

val id = nextId()

genCounter(useragent)

reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))

id

}

def get_worker_id(): Long = workerId

def get_datacenter_id(): Long = datacenterId

def get_timestamp() = System.currentTimeMillis

protected[snowflake] def nextId(): Long = synchronized {

var timestamp = timeGen()

if (timestamp < lastTimestamp) {

exceptionCounter.incr(1)

log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);

throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(

lastTimestamp - timestamp))

}

if (lastTimestamp == timestamp) {

sequence = (sequence + 1) & sequenceMask

if (sequence == 0) {

timestamp = tilNextMillis(lastTimestamp)

}

} else {

sequence = 0

}

lastTimestamp = timestamp

((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence

}

protected def tilNextMillis(lastTimestamp: Long): Long = {

var timestamp = timeGen()

while (timestamp <= lastTimestamp) {

timestamp = timeGen()

}

timestamp

}

protected def timeGen(): Long = System.currentTimeMillis()

val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r

def validUseragent(useragent: String): Boolean = useragent match {

case AgentParser(_) => true

case _ => false

}

}

Scala是一門可以編譯成字節碼的語言,簡單理解是在Java語法基礎上加上了很多語法糖,例如不用每條語句后寫分號,可以使用動態類型等等。抱著試一試的心態,我把Scala版的代碼“翻譯”成Java版本的,對scala代碼改動的地方如下:

/** Copyright 2010-2012 Twitter, Inc.*/

package com.twitter.service.snowflake

import com.twitter.ostrich.stats.Stats

import com.twitter.service.snowflake.gen._

import java.util.Random

import com.twitter.logging.Logger

/**

* An object that generates IDs.

* This is broken into a separate class in case

* we ever want to support multiple worker threads

* per process

*/

class IdWorker( // |

val workerId: Long, // |

val datacenterId: Long, // |

private val reporter: Reporter,//日志相關,刪 // |

var sequence: Long = 0L) // |

extends Snowflake.Iface { //接口找不到,刪 // |

private[this] def genCounter(agent: String) = { // |

Stats.incr("ids_generated") // |

Stats.incr("ids_generated_%s".format(agent)) // |

} // |

private[this] val exceptionCounter = Stats.getCounter("exceptions") // |

private[this] val log = Logger.get // |

private[this] val rand = new Random // |

val twepoch = 1288834974657L

private[this] val workerIdBits = 5L

private[this] val datacenterIdBits = 5L

private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)

private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)

private[this] val sequenceBits = 12L

private[this] val workerIdShift = sequenceBits

private[this] val datacenterIdShift = sequenceBits + workerIdBits

private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits

private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)

private[this] var lastTimestamp = -1L

//----------------------------------------------------------------------------------------------------------------------------//

// sanity check for workerId //

if (workerId > maxWorkerId || workerId < 0) { //

exceptionCounter.incr(1) //

throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId)) //這

// |-->改成:throw new IllegalArgumentException //部

// (String.format("worker Id can't be greater than %d or less than 0",maxWorkerId)) //分

} //放

//到

if (datacenterId > maxDatacenterId || datacenterId < 0) { //構

exceptionCounter.incr(1) //

throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId)) //函

// |-->改成:throw new IllegalArgumentException //數

// (String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId)) //中

} //

//

log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", //

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId) //

// |-->改成:System.out.printf("worker...%d...",timestampLeftShift,...); //

//----------------------------------------------------------------------------------------------------------------------------//

//-------------------------------------------------------------------//

//這個函數刪除錯誤處理相關的代碼后,剩下一行代碼:val id = nextId() //

//所以我們直接調用nextId()函數可以了,所以在“翻譯”時可以刪除這個函數 //

def get_id(useragent: String): Long = { //

if (!validUseragent(useragent)) { //

exceptionCounter.incr(1) //

throw new InvalidUserAgentError //刪

} //除

//

val id = nextId() //

genCounter(useragent) //

//

reporter.report(new AuditLogEntry(id, useragent, rand.nextLong)) //

id //

} //

//-------------------------------------------------------------------//

def get_worker_id(): Long = workerId // |

def get_datacenter_id(): Long = datacenterId // |

def get_timestamp() = System.currentTimeMillis // |

protected[snowflake] def nextId(): Long = synchronized { // 改成Java函數

var timestamp = timeGen()

if (timestamp < lastTimestamp) {

exceptionCounter.incr(1) // 錯誤處理相關,刪

log.error("clock is moving backwards. Rejecting requests until %d.", lastTimestamp); // 改成System.err.printf(...)

throw new InvalidSystemClock("Clock moved backwards. Refusing to generate id for %d milliseconds".format(

lastTimestamp - timestamp)) // 改成RumTimeException

}

if (lastTimestamp == timestamp) {

sequence = (sequence + 1) & sequenceMask

if (sequence == 0) {

timestamp = tilNextMillis(lastTimestamp)

}

} else {

sequence = 0

}

lastTimestamp = timestamp

((timestamp - twepoch) << timestampLeftShift) | // |

(datacenterId << datacenterIdShift) | // |

(workerId << workerIdShift) | // |

sequence // |

}

protected def tilNextMillis(lastTimestamp: Long): Long = { // 改成Java函數

var timestamp = timeGen()

while (timestamp <= lastTimestamp) {

timestamp = timeGen()

}

timestamp // 加上關鍵字return

}

protected def timeGen(): Long = System.currentTimeMillis() // 改成Java函數

val AgentParser = """([a-zA-Z][a-zA-Z\-0-9]*)""".r // |

// |

def validUseragent(useragent: String): Boolean = useragent match { // |

case AgentParser(_) => true // |

case _ => false // |

} // |

}

改出來的Java版:

public class IdWorker{

private long workerId;

private long datacenterId;

private long sequence;

public IdWorker(long workerId, long datacenterId, long sequence){

// sanity check for workerId

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));

}

System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

this.workerId = workerId;

this.datacenterId = datacenterId;

this.sequence = sequence;

}

private long twepoch = 1288834974657L;

private long workerIdBits = 5L;

private long datacenterIdBits = 5L;

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

private long sequenceBits = 12L;

private long workerIdShift = sequenceBits;

private long datacenterIdShift = sequenceBits + workerIdBits;

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

private long sequenceMask = -1L ^ (-1L << sequenceBits);

private long lastTimestamp = -1L;

public long getWorkerId(){

return workerId;

}

public long getDatacenterId(){

return datacenterId;

}

public long getTimestamp(){

return System.currentTimeMillis();

}

public synchronized long nextId() {

long timestamp = timeGen();

if (timestamp < lastTimestamp) {

System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);

throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",

lastTimestamp - timestamp));

}

if (lastTimestamp == timestamp) {

sequence = (sequence + 1) & sequenceMask;

if (sequence == 0) {

timestamp = tilNextMillis(lastTimestamp);

}

} else {

sequence = 0;

}

lastTimestamp = timestamp;

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence;

}

private long tilNextMillis(long lastTimestamp) {

long timestamp = timeGen();

while (timestamp <= lastTimestamp) {

timestamp = timeGen();

}

return timestamp;

}

private long timeGen(){

return System.currentTimeMillis();

}

//---------------測試---------------

public static void main(String[] args) {

IdWorker worker = new IdWorker(1,1,1);

for (int i = 0; i < 30; i++) {

System.out.println(worker.nextId());

}

}

}

代碼理解

上面的代碼中,有部分位運算的代碼,如:

sequence = (sequence + 1) & sequenceMask;

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence;

為了能更好理解,我對相關知識研究了一下。

負數的二進制表示

在計算機中,負數的二進制是用補碼來表示的。

假設我是用Java中的int類型來存儲數字的,

int類型的大小是32個二進制位(bit),即4個字節(byte)。(1 byte = 8 bit)

那么十進制數字3在二進制中的表示應該是這樣的:

00000000 00000000 00000000 00000011

// 3的二進制表示,就是原碼

那數字-3在二進制中應該如何表示?

我們可以反過來想想,因為-3+3=0,

在二進制運算中把-3的二進制看成未知數x來求解,

求解算式的二進制表示如下:

00000000 00000000 00000000 00000011 //3,原碼

+ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx //-3,補碼

-----------------------------------------------

00000000 00000000 00000000 00000000

反推x的值,3的二進制加上什么值才使結果變成00000000 00000000 00000000 00000000?:

00000000 00000000 00000000 00000011 //3,原碼

+ 11111111 11111111 11111111 11111101 //-3,補碼

-----------------------------------------------

1 00000000 00000000 00000000 00000000

反推的思路是3的二進制數從最低位開始逐位加1,使溢出的1不斷向高位溢出,直到溢出到第33位。然后由于int類型最多只能保存32個二進制位,所以最高位的1溢出了,剩下的32位就成了(十進制的)0。

補碼的意義就是可以拿補碼和原碼(3的二進制)相加,最終加出一個“溢出的0”

以上是理解的過程,實際中記住公式就很容易算出來:

補碼 = 反碼 + 1

補碼 = (原碼 - 1)再取反碼

因此-1的二進制應該這樣算:

00000000 00000000 00000000 00000001 //原碼:1的二進制

11111111 11111111 11111111 11111110 //取反碼:1的二進制的反碼

11111111 11111111 11111111 11111111 //加1:-1的二進制表示(補碼)

用位運算計算n個bit能表示的最大數值

比如這樣一行代碼:

private long workerIdBits = 5L;

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

上面代碼換成這樣看方便一點:

long maxWorkerId = -1L ^ (-1L << 5L)

咋一看真的看不準哪個部分先計算,于是查了一下Java運算符的優先級表:

所以上面那行代碼中,運行順序是:

-1 左移 5,得結果a

-1 異或 a

long maxWorkerId = -1L ^ (-1L << 5L)的二進制運算過程如下:

-1 左移 5,得結果a :

11111111 11111111 11111111 11111111 //-1的二進制表示(補碼)

11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位補0

11111111 11111111 11111111 11100000 //結果a

-1 異或 a :

11111111 11111111 11111111 11111111 //-1的二進制表示(補碼)

^ 11111111 11111111 11111111 11100000 //兩個操作數的位中,相同則為0,不同則為1

---------------------------------------------------------------------------

00000000 00000000 00000000 00011111 //最終結果31

最終結果是31,二進制00000000 00000000 00000000 00011111轉十進制可以這么算:

$$ 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 16 + 8 + 4 + 2 + 1 =31 $$

那既然現在知道算出來long maxWorkerId = -1L ^ (-1L << 5L)中的maxWorkerId = 31,有什么含義?為什么要用左移5來算?如果你看過概述部分,請找到這段內容看看:

5位(bit)可以表示的最大正整數是$2^{5}-1 = 31$,即可以用0、1、2、3、....31這32個數字,來表示不同的datecenterId或workerId

-1L ^ (-1L << 5L)結果是31,$2^{5}-1$的結果也是31,所以在代碼中,-1L ^ (-1L << 5L)的寫法是利用位運算計算出5位能表示的最大正整數是多少

用mask防止溢出

有一段有趣的代碼:

sequence = (sequence + 1) & sequenceMask;

分別用不同的值測試一下,你就知道它怎么有趣了:

long seqMask = -1L ^ (-1L << 12L); //計算12位能耐存儲的最大正整數,相當于:2^12-1 = 4095

System.out.println("seqMask: "+seqMask);

System.out.println(1L & seqMask);

System.out.println(2L & seqMask);

System.out.println(3L & seqMask);

System.out.println(4L & seqMask);

System.out.println(4095L & seqMask);

System.out.println(4096L & seqMask);

System.out.println(4097L & seqMask);

System.out.println(4098L & seqMask);

/**

seqMask: 4095

1

2

3

4

4095

0

1

2

*/

這段代碼通過位與運算保證計算的結果范圍始終是 0-4095 !

用位運算匯總結果

還有另外一段詭異的代碼:

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence;

為了弄清楚這段代碼,

首先 需要計算一下相關的值:

private long twepoch = 1288834974657L; //起始時間戳,用于用當前時間戳減去這個時間戳,算出偏移量

private long workerIdBits = 5L; //workerId占用的位數:5

private long datacenterIdBits = 5L; //datacenterId占用的位數:5

private long maxWorkerId = -1L ^ (-1L << workerIdBits); // workerId可以使用的最大數值:31

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // datacenterId可以使用的最大數值:31

private long sequenceBits = 12L;//序列號占用的位數:12

private long workerIdShift = sequenceBits; // 12

private long datacenterIdShift = sequenceBits + workerIdBits; // 12+5 = 17

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 12+5+5 = 22

private long sequenceMask = -1L ^ (-1L << sequenceBits);//4095

private long lastTimestamp = -1L;

其次 寫個測試,把參數都寫死,并運行打印信息,方便后面來核對計算結果:

//---------------測試---------------

public static void main(String[] args) {

long timestamp = 1505914988849L;

long twepoch = 1288834974657L;

long datacenterId = 17L;

long workerId = 25L;

long sequence = 0L;

System.out.printf("\ntimestamp: %d \n",timestamp);

System.out.printf("twepoch: %d \n",twepoch);

System.out.printf("datacenterId: %d \n",datacenterId);

System.out.printf("workerId: %d \n",workerId);

System.out.printf("sequence: %d \n",sequence);

System.out.println();

System.out.printf("(timestamp - twepoch): %d \n",(timestamp - twepoch));

System.out.printf("((timestamp - twepoch) << 22L): %d \n",((timestamp - twepoch) << 22L));

System.out.printf("(datacenterId << 17L): %d \n" ,(datacenterId << 17L));

System.out.printf("(workerId << 12L): %d \n",(workerId << 12L));

System.out.printf("sequence: %d \n",sequence);

long result = ((timestamp - twepoch) << 22L) |

(datacenterId << 17L) |

(workerId << 12L) |

sequence;

System.out.println(result);

}

/** 打印信息:

timestamp: 1505914988849

twepoch: 1288834974657

datacenterId: 17

workerId: 25

sequence: 0

(timestamp - twepoch): 217080014192

((timestamp - twepoch) << 22L): 910499571845562368

(datacenterId << 17L): 2228224

(workerId << 12L): 102400

sequence: 0

910499571847892992

*/

代入位移的值得之后,就是這樣:

return ((timestamp - 1288834974657) << 22) |

(datacenterId << 17) |

(workerId << 12) |

sequence;

對于尚未知道的值,我們可以先看看概述 中對SnowFlake結構的解釋,再代入在合法范圍的值(windows系統可以用計算器方便計算這些值的二進制),來了解計算的過程。

當然,由于我的測試代碼已經把這些值寫死了,那直接用這些值來手工驗證計算結果即可:

long timestamp = 1505914988849L;

long twepoch = 1288834974657L;

long datacenterId = 17L;

long workerId = 25L;

long sequence = 0L;

設:timestamp = 1505914988849,twepoch = 1288834974657

1505914988849 - 1288834974657 = 217080014192 (timestamp相對于起始時間的毫秒偏移量),其(a)二進制左移22位計算過程如下:

|

00000000 00000000 000000|00 00110010 10001010 11111010 00100101 01110000 // a = 217080014192

00001100 10100010 10111110 10001001 01011100 00|000000 00000000 00000000 // a左移22位后的值(la)

|

設:datacenterId = 17,其(b)二進制左移17位計算過程如下:

|

00000000 00000000 0|0000000 ?00000000 00000000 00000000 00000000 00010001 // b = 17

0000000?0 00000000 00000000 00000000 00000000 0010001|0 00000000 00000000 // b左移17位后的值(lb)

|

設:workerId = 25,其(c)二進制左移12位計算過程如下:

|

?00000000 0000|0000 00000000 00000000 00000000 00000000 00000000 00011001? // c = 25

00000000 00000000 00000000 00000000 00000000 00000001 1001|0000 00000000? // c左移12位后的值(lc)

|

設:sequence = 0,其二進制如下:

00000000 00000000 00000000 00000000 00000000 00000000 0000?0000 00000000? // sequence = 0

現在知道了每個部分左移后的值(la,lb,lc),代碼可以簡化成下面這樣去理解:

return ((timestamp - 1288834974657) << 22) |

(datacenterId << 17) |

(workerId << 12) |

sequence;

-----------------------------

|

|簡化

\|/

-----------------------------

return (la) |

(lb) |

(lc) |

sequence;

上面的管道符號|在Java中也是一個位運算符。其含義是:

x的第n位和y的第n位 只要有一個是1,則結果的第n位也為1,否則為0,因此,我們對四個數的位或運算如下:

1 | 41 | 5 | 5 | 12

0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //la

0|000000?0 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //lb

0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //lc

or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|?0000 00000000? //sequence

------------------------------------------------------------------------------------------

0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|?0000 00000000? //結果:910499571847892992

結果計算過程:

1) 從至左列出1出現的下標(從0開始算):

0000 1 1 00 1 0 1 000 1 0 1 0 1 1 1 1 1 0 1 000 1 00 1 0 1 0 1 1 1 0000 1 000 1 1 1 00 1? 0000 0000 0000

59 58 55 53 49 47 45 44 43 42 41 39 35 32 30 28 27 26 21 17 16 15 12

2) 各個下標作為2的冪數來計算,并相加:

$ 2^{59}+2^{58}+2^{55}+2^{53}+2^{49}+2^{47}+2^{45}+2^{44}+2^{43}+

2^{42}+2^{41}+2^{39}+2^{35}+2^{32}+2^{30}+2^{28}+2^{27}+2^{26}+

2^{21}+2^{17}+2^{16}+2^{15}+2^{2} $

2^59} : 576460752303423488

2^58} : 288230376151711744

2^55} : 36028797018963968

2^53} : 9007199254740992

2^49} : 562949953421312

2^47} : 140737488355328

2^45} : 35184372088832

2^44} : 17592186044416

2^43} : 8796093022208

2^42} : 4398046511104

2^41} : 2199023255552

2^39} : 549755813888

2^35} : 34359738368

2^32} : 4294967296

2^30} : 1073741824

2^28} : 268435456

2^27} : 134217728

2^26} : 67108864

2^21} : 2097152

2^17} : 131072

2^16} : 65536

2^15} : 32768

+ 2^12} : 4096

----------------------------------------

910499571847892992

計算截圖:

跟測試程序打印出來的結果一樣,手工驗證完畢!

觀察

1 | 41 | 5 | 5 | 12

0|0001100 10100010 10111110 10001001 01011100 00| | | //la

0| |10001| | //lb

0| | |1 1001| //lc

or 0| | | |?0000 00000000? //sequence

------------------------------------------------------------------------------------------

0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|?0000 00000000? //結果:910499571847892992

上面的64位我按1、41、5、5、12的位數截開了,方便觀察。

縱向觀察發現:

在41位那一段,除了la一行有值,其它行(lb、lc、sequence)都是0,(我爸其它)

在左起第一個5位那一段,除了lb一行有值,其它行都是0

在左起第二個5位那一段,除了lc一行有值,其它行都是0

按照這規律,如果sequence是0以外的其它值,12位那段也會有值的,其它行都是0

橫向觀察發現:

在la行,由于左移了5+5+12位,5、5、12這三段都補0了,所以la行除了41那段外,其它肯定都是0

同理,lb、lc、sequnece行也以此類推

正因為左移的操作,使四個不同的值移到了SnowFlake理論上相應的位置,然后四行做位或運算(只要有1結果就是1),就把4段的二進制數合并成一個二進制數。

結論:

所以,在這段代碼中

return ((timestamp - 1288834974657) << 22) |

(datacenterId << 17) |

(workerId << 12) |

sequence;

左移運算是為了將數值移動到對應的段(41、5、5,12那段因為本來就在最右,因此不用左移)。

然后對每個左移后的值(la、lb、lc、sequence)做位或運算,是為了把各個短的數據合并起來,合并成一個二進制數。

最后轉換成10進制,就是最終生成的id

擴展

在理解了這個算法之后,其實還有一些擴展的事情可以做:

根據自己業務修改每個位段存儲的信息。算法是通用的,可以根據自己需求適當調整每段的大小以及存儲的信息。

解密id,由于id的每段都保存了特定的信息,所以拿到一個id,應該可以嘗試反推出原始的每個段的信息。反推出的信息可以幫助我們分析。比如作為訂單,可以知道該訂單的生成日期,負責處理的數據中心等等。

總結

以上是生活随笔為你收集整理的python雪花算法生成id_理解分布式id生成算法SnowFlake的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。