日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

CPU是什么?GPU是什么?有图有真相。

發布時間:2024/8/26 编程问答 49 豆豆
生活随笔 收集整理的這篇文章主要介紹了 CPU是什么?GPU是什么?有图有真相。 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

1.CPU
CPU( Central Processing Unit, 中央處理器)就是機器的“大腦”,也是布局謀略、發號施令、控制行動的“總司令官”。

CPU的結構主要包括運算器(ALU, Arithmetic and Logic Unit)、控制單元(CU, Control Unit)、寄存器(Register)、高速緩存器(Cache)和它們之間通訊的數據、控制及狀態的總線。

簡單來說就是:計算單元、控制單元和存儲單元,架構如下圖所示:

中文翻譯:

從字面上我們也很好理解,計算單元主要執行算術運算、移位等操作以及地址運算和轉換;存儲單元主要用于保存運算中產生的數據以及指令等;控制單元則對指令譯碼,并且發出為完成每條指令所要執行的各個操作的控制信號。

所以一條指令在CPU中執行的過程是這樣的:讀取到指令后,通過指令總線送到控制器(黃色區域)中進行譯碼,并發出相應的操作控制信號;然后運算器(綠色區域)按照操作指令對數據進行計算,并通過數據總線將得到的數據存入數據緩存器(大塊橙色區域)

是不是有點兒復雜?沒關系,這張圖完全不用記住,我們只需要知道,CPU遵循的是馮諾依曼架構,其核心就是:存儲程序,順序執行。

講到這里,有沒有看出問題,沒錯——在這個結構圖中,負責計算的綠色區域占的面積似乎太小了,而橙色區域的緩存Cache和黃色區域的控制單元占據了大量空間。

高中化學有句老生常談的話叫:結構決定性質,放在這里也非常適用。

因為CPU的架構中需要大量的空間去放置存儲單元(橙色部分)和控制單元(黃色部分),相比之下計算單元(綠色部分)只占據了很小的一部分,所以它在大規模并行計算能力上極受限制,而更擅長于邏輯控制。

另外,因為遵循馮諾依曼架構(存儲程序,順序執行),CPU就像是個一板一眼的管家,人們吩咐的事情它總是一步一步來做。但是隨著人們對更大規模與更快處理速度的需求的增加,這位管家漸漸變得有些力不從心。

于是,大家就想,能不能把多個處理器放在同一塊芯片上,讓它們一起來做事,這樣效率不就提高了嗎?

沒錯,GPU便由此誕生了。

2.GPU
在正式講解GPU之前,我們先來講講上文中提到的一個概念——并行計算。

并行計算(Parallel Computing)是指同時使用多種計算資源解決計算問題的過程,是提高計算機系統計算速度和處理能力的一種有效手段。它的基本思想是用多個處理器來共同求解同一問題,即將被求解的問題分解成若干個部分,各部分均由一個獨立的處理機來并行計算。

并行計算可分為時間上的并行和空間上的并行。

時間上的并行是指流水線技術,比如說工廠生產食品的時候分為四步:清洗-消毒-切割-包裝。

如果不采用流水線,一個食品完成上述四個步驟后,下一個食品才進行處理,耗時且影響效率。但是采用流水線技術,就可以同時處理四個食品。這就是并行算法中的時間并行,在同一時間啟動兩個或兩個以上的操作,大大提高計算性能。

空間上的并行是指多個處理機并發的執行計算,即通過網絡將兩個以上的處理機連接起來,達到同時計算同一個任務的不同部分,或者單個處理機無法解決的大型問題。

比如小李準備在植樹節種三棵樹,如果小李1個人需要6個小時才能完成任務,植樹節當天他叫來了好朋友小紅、小王,三個人同時開始挖坑植樹,2個小時后每個人都完成了一顆植樹任務,這就是并行算法中的空間并行,將一個大任務分割成多個相同的子任務,來加快問題解決速度。

所以說,如果讓CPU來執行這個種樹任務的話,它就會一棵一棵的種,花上6個小時的時間,但是讓GPU來種樹,就相當于好幾個人同時在種。

GPU全稱為Graphics Processing Unit,中文為圖形處理器,就如它的名字一樣,GPU最初是用在個人電腦、工作站、游戲機和一些移動設備(如平板電腦、智能手機等)上運行繪圖運算工作的微處理器。

為什么GPU特別擅長處理圖像數據呢?這是因為圖像上的每一個像素點都有被處理的需要,而且每個像素點處理的過程和方式都十分相似,也就成了GPU的天然溫床。

GPU簡單架構如下圖所示:

從架構圖我們就能很明顯的看出,GPU的構成相對簡單,有數量眾多的計算單元和超長的流水線,特別適合處理大量的類型統一的數據。

但GPU無法單獨工作,必須由CPU進行控制調用才能工作。CPU可單獨作用,處理復雜的邏輯運算和不同的數據類型,但當需要大量的處理類型統一的數據時,則可調用GPU進行并行計算。

注:GPU中有很多的運算器ALU和很少的緩存cache,緩存的目的不是保存后面需要訪問的數據的,這點和CPU不同,而是為線程thread提高服務的。如果有很多線程需要訪問同一個相同的數據,緩存會合并這些訪問,然后再去訪問dram。

GPU的工作大部分都計算量大,但沒什么技術含量,而且要重復很多很多次。

借用知乎上某大神的說法,就像你有個工作需要計算幾億次一百以內加減乘除一樣,最好的辦法就是雇上幾十個小學生一起算,一人算一部分,反正這些計算也沒什么技術含量,純粹體力活而已;而CPU就像老教授,積分微分都會算,就是工資高,一個老教授資頂二十個小學生,你要是富士康你雇哪個?

GPU就是用很多簡單的計算單元去完成大量的計算任務,純粹的人海戰術。這種策略基于一個前提,就是小學生A和小學生B的工作沒有什么依賴性,是互相獨立的。

但有一點需要強調,雖然GPU是為了圖像處理而生的,但是我們通過前面的介紹可以發現,它在結構上并沒有專門為圖像服務的部件,只是對CPU的結構進行了優化與調整,所以現在GPU不僅可以在圖像處理領域大顯身手,它還被用來科學計算、密碼破解、數值分析,海量數據處理(排序,Map-Reduce等),金融分析等需要大規模并行計算的領域。

所以GPU也可以認為是一種較通用的芯片。

另贈送:

APU – Accelerated Processing Unit, 加速處理器,AMD公司推出加速圖像處理芯片產品。

BPU – Brain Processing Unit, 地平線公司主導的嵌入式處理器架構。自動駕駛

CPU – Central Processing Unit 中央處理器, 目前PC core的主流產品。

DPU – Deep learning Processing Unit, 深度學習處理器,最早由國內深鑒科技提出;另說有Dataflow Processing Unit 數據流處理器, Wave Computing 公司提出的AI架構;Data storage Processing Unit,深圳大普微的智能固態硬盤處理器。

FPU – Floating Processing Unit 浮點計算單元,通用處理器中的浮點運算模塊。

GPU – Graphics Processing Unit, 圖形處理器,采用多線程SIMD架構,為圖形處理而生。

HPU – Holographics Processing Unit 全息圖像處理器, 微軟出品的全息計算芯片與設備。

IPU – Intelligence Processing Unit, Deep Mind投資的Graphcore公司出品的AI處理器產品。

MPU/MCU – Microprocessor/Micro controller Unit, 微處理器/微控制器,一般用于低計算應用的RISC計算機體系架構產品,如ARM-M系列處理器。

NPU – Neural Network Processing Unit,神經網絡處理器,是基于神經網絡算法與加速的新型處理器總稱,如中科院計算所/寒武紀公司出品的diannao系列。

RPU – Radio Processing Unit, 無線電處理器, Imagination Technologies 公司推出的集合集Wifi/藍牙/FM/處理器為單片的處理器。

TPU – Tensor Processing Unit 張量處理器, Google 公司推出的加速人工智能算法的專用處理器。目前一代TPU面向Inference,二代面向訓練。另外,

VPU – Vector Processing Unit 矢量處理器,Intel收購的Movidius公司推出的圖像處理與人工智能的專用芯片的加速計算核心。

WPU – Wearable Processing Unit, 可穿戴處理器,Ineda Systems公司推出的可穿戴片上系統產品,包含GPU/MIPS CPU等IP。

XPU – 百度與Xilinx公司在2017年Hotchips大會上發布的FPGA智能云加速,含256核。

ZPU – Zylin Processing Unit, 由挪威Zylin 公司推出的一款32位開源處理器。

當26個字母被用完后,即將出現XXPU,XXXPU,并以更快的速度占領起名界。

總結

以上是生活随笔為你收集整理的CPU是什么?GPU是什么?有图有真相。的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。