日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Severstal: Steel Defect Detection比赛的discussion调研

發布時間:2023/12/20 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Severstal: Steel Defect Detection比赛的discussion调研 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.


特征匹配
https://zhuanlan.zhihu.com/p/52140541
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108078#latest-621878

ensemble技巧
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107716#latest-624046
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/111457#latest-642578


這個鏈接提到訓練時長的問題,或許需要保存中間結果
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108554#latest-626181


提到了Dice-Score
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/101465#latest-586178

一篇檢測銹斑的論文
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/101471#latest-625980
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109297#latest-631198
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108821#latest-629610
https://software.intel.com/en-us/articles/use-machine-learning-to-detect-defects-on-the-steel-surface

引導性鏈接
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/101969#latest-641353
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/103296#latest-640460


關注圖像角落里的第一個像素的坐標到底是(1,1)還是(0,1)
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/102146#latest-589715

提到了一篇論文討論了語義分割里面的不同類型的loss
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/102386#latest-625072
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/110536#latest-639400
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108206#latest-635042


提供了一些網絡
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/105296#latest-606287


下面這幾個沒有完全看懂
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/103861#latest-600125
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/103367#latest-639821
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106477#latest-642453
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109423#latest-630712
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108270#latest-629664
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107889#latest-631449

半監督
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/110426#latest-641084

提到了數據增強
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/104850#latest-606137
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109227#latest-640539

貌似是使用了條件隨機場
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106086#latest-613534


蛙哥說先判斷一個像素是不是銹斑,然后判斷是第幾類
然后提到不要使用所有數據,那樣反而會讓得分低下
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106099#latest-629814


照片一致,但是標簽不一致
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107053#latest-621775

pool大小的調整建議
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106952#latest-620343


新手包
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106462#latest-641632


說法是34層的resnet最好
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108949#latest-636914


以前的語義分割冠軍方案
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation/discussion/108308#latest-625068

椒鹽噪聲和對抗驗證
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/111119#latest-640192
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106834#latest-633503
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/108790#latest-627471


找到很多子類
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/110363#latest-638823

提出一個問題:
使用預訓練的網絡,但是預訓練的圖片和當前的圖片不一樣的時候如何處理?(帖子內容我沒看,其實就是修改最后一層)
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/107246#latest-618321


kaggle在語義分割中的得分機制dice-score
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/110188#latest-642222


貌似需要扔掉一些圖片
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109673#latest-637866


一大堆神經網絡的論文
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109370#latest-631305


提到了IOU
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109847#latest-632505


語義分割網絡回顧
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/109318#latest-629292

下面這個似乎非常重要,據說只要移除False Positive,就可以獲得0.9117
https://www.kaggle.com/evgenyshtepin/severstal-mlcomp-catalyst-infer-0-90726
https://www.kaggle.com/c/severstal-steel-defect-detection/discussion/106462#latest-634450


這個EDA做的很漂亮
https://www.kaggle.com/avirald/clear-mask-visualization-and-simple-eda

這個鏈接提到IoU是一種 loss
https://www.kaggle.com/rishabhiitbhu/unet-starter-kernel-pytorch-lb-0-88

總結

以上是生活随笔為你收集整理的Severstal: Steel Defect Detection比赛的discussion调研的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。